與x軸相切且和半圓x2+y2=9(0≤y≤3)內(nèi)切的動圓圓心的軌跡方程是
 
考點:軌跡方程
專題:計算題,直線與圓
分析:當兩圓內(nèi)切時,根據(jù)兩圓心之間的距離等于兩半徑相減可得動圓圓心的軌跡方程.
解答: 解:設(shè)動圓圓心為M(x,y),做MN⊥x軸交x軸于N.
因為兩圓內(nèi)切,|MO|=3-|MN|,
所以
x2+y2
=3-y,
化簡得x2=9-6y(y>0)
故答案為:x2=9-6y(y>0).
點評:此題考查學(xué)生掌握圓與圓的位置關(guān)系所滿足的條件,考學(xué)生的計算能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a14=
1
a
,a114=
1
b
,a2014=
1
c
,則ab+19bc-20ac=( 。
A、0B、14
C、114D、2014

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式x2+(a-1)x+1≤0的解集為空集,命題q:方程(a-1)x2+(3-a)y2=(a-1)(3-a)表示焦點在y軸上的橢圓,若命題¬q為真命題,p∨q為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某幼兒園小班的美術(shù)課上,老師帶領(lǐng)小朋友們用水彩筆為美術(shù)本上如右圖所示的兩個大小不同的氣球涂色,要求一個氣球只涂一種顏色,兩個氣球分別涂不同的顏色.該班的小朋友牛,F(xiàn)可用的有暖色系水彩筆紅色、橙色各一支,冷色系水彩筆綠色,藍色,紫色各一支.
(1)牛牛從他可用的五支水彩筆中隨機的取出兩支按老師要求為氣球涂色,問兩個氣球同為冷色的概率是多大?
(2)一般情況下,老師發(fā)出開始指令到涂色活動全部結(jié)束需要10分鐘.牛牛至少需要2分鐘完成該項任務(wù).老師在發(fā)出開始指令1分鐘后隨時可能來到牛牛身邊查看涂色情況.問當老師來到牛牛身邊時牛牛已經(jīng)完成任務(wù)的概率是多大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+a
x+b
(a、b為常數(shù)).
(1)若b=1,解不等式f(x-1)<0;
(2)若a=1,當x∈[-1,2]時,f(x)>
-1
(x+b)2
恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cosxcos(
2
+x)+
3
(2cos2x-1)
(1)求f(x)的最大值;
(2)若
π
12
<x<
π
3
,且f(x)=
1
2
,求cos2x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點P為函數(shù)f(x)=
1
2
x2+2ax與g(x)=3a2lnx+2b(a>0)圖象的公共點,以P為切點可作直線l與兩曲線都相切,則實數(shù)b的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項式(x-
2
x
6的展開式中第5項的二項式系數(shù)為
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式2x≥1的解集為
 

查看答案和解析>>

同步練習(xí)冊答案