已知在正項(xiàng)數(shù)列{an}中,a1=2,點(diǎn)An(,)在雙曲線y2-x2=1上,數(shù)列{bn}中,點(diǎn)(bn,Tn)在直線y=-x+1上,其中Tn是數(shù)列{bn}的前n項(xiàng)和.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:數(shù)列{bn}是等比數(shù)列;
(3)若cn=an·bn,求證:cn+1<cn.
解 (1)由已知點(diǎn)An在y2-x2=1上知,an+1-an=1,
∴數(shù)列{an}是以2為首項(xiàng),以1為公差的等差數(shù)列,∴an=a1+(n-1)d=2+n-1=n+1.
(2)證明:∵點(diǎn)(bn,Tn)在直線y=-x+1上,
∴Tn=-bn+1.①
∴Tn-1=-bn-1+1(n≥2),②
①②兩式相減得bn=-bn+bn-1(n≥2),
∴bn=bn-1,∴bn=bn-1.
由①,令n=1,得b1=-b1+1,∴b1=,
∴{bn}是以為首項(xiàng),以為公比的等比數(shù)列.
(3)證明:由(2)可知bn=·n-1=.
∴cn=an·bn=(n+1)·,
∴cn+1-cn=(n+2)·-(n+1)·
=[(n+2)-3(n+1)]=(-2n-1)<0,
∴cn+1<cn.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=a,an+1=Sn+3n,n∈N*.
(1)記bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知等比數(shù)列{an}的前n項(xiàng)和為Sn,則下列一定成立的是( )
A.若a3>0,則a2 013<0
B.若a4>0,則a2 014<0
C.若a3>0,則S2 013>0
D.若a4>0,則S2 014>0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
植樹節(jié)某班20名同學(xué)在一段直線公路一側(cè)植樹,每人植一棵,相鄰兩棵樹相距10米.開始時(shí)需將樹苗集中放置在某一樹坑旁邊.使每位同學(xué)從各自樹坑出發(fā)前來領(lǐng)取樹苗往返所走的路程總和最小,這個(gè)最小值為________米.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
數(shù)列{an}滿足an+1+(-1)nan=2n-1,則{an}的前60項(xiàng)和為( )
A.3 690 B.3 660
C.1 845 D.1 830
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在數(shù)列{an}中,a1=1,且Sn,Sn+1,2S1成等差數(shù)列(Sn表示數(shù)列{an}的前n項(xiàng)和),則S2,S3,S4分別為__________,由此猜想Sn=__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com