函數(shù)y=x2(x≤0)的反函數(shù)是(  )
A、y=
x
(x≥0)
B、y=
x
(x≤0)
C、y=-
x
(x≥0)
D、y=-
x
(x≤0)
考點(diǎn):反函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用反函數(shù)的求法即可得出.
解答: 解:由y=x2(x≤0),解得x=-
y
(y≥0),將x與y互換可得:y=-
x
(x≥0).
故選:C.
點(diǎn)評(píng):本題考查了反函數(shù)的求法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某校舉行的“校園藝術(shù)節(jié)”比賽上,七位評(píng)委為1號(hào)選手打出的分?jǐn)?shù)的莖葉圖如圖所示,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的平均數(shù)為85,則m2+n2的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,lg(a3•a8•a13)=6,則a1•a15的值等于( 。
A、10000B、1000
C、100D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,|
BA
|=2,|
AC
|=1,
BA
AC
=-1,則△ABC的外接圓半徑是(  )
A、1
B、2
C、
7
2
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
),其導(dǎo)函數(shù)f′(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式為( 。
A、f(x)=2sin(
1
2
x-
π
3
B、f(x)=2sin(
1
2
x+
π
6
C、f(x)=sin(
1
2
x-
π
3
D、f(x)=sin(
1
2
x+
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果是( 。
A、16B、8C、4D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)在R上單調(diào)遞減,且對(duì)于任意實(shí)數(shù)m,n,總有f(m+n)=f(m)•f(n),設(shè)A={(x,y)|f(x2)•f(y2)>f(1)},B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=∅,則a的取值范圍是( 。
A、-
3
≤a≤
3
B、-
3
≤a≤
3
且a≠0
C、0≤a≤
3
D、-
3
≤a≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知c>0,設(shè)p:函數(shù)f(x)=cx在R上單調(diào)遞減,q:函數(shù)g(x)=
1
2cx2+2x+1
的定義域是R,如果“p且q”是假命題,“p或q”是真命題,那么c的取值范圍是(  )
A、(
1
2
,1)
B、(
1
2
,+∞)
C、(0,
1
2
]∪[1,+∞)
D、(0,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在五場(chǎng)籃球比賽中,甲、乙兩名運(yùn)動(dòng)員得分的莖葉圖如圖所示,下列說(shuō)法正確的是( 。
A、在這五場(chǎng)籃球比賽中,甲的平均得分比乙好,且甲比乙穩(wěn)定
B、在這五場(chǎng)比賽中,甲的平均得分比乙好,但乙比甲穩(wěn)定
C、在這五場(chǎng)比賽中,乙的平均得分比甲好,且乙比甲穩(wěn)定
D、在這五場(chǎng)比賽中,乙的平均得分比甲好,但甲比乙穩(wěn)定

查看答案和解析>>

同步練習(xí)冊(cè)答案