已知,函數(shù),x∈[0,2]
(1)當(dāng)a=1時(shí),求f(x)在點(diǎn)(3,6)處的切線方程;
(2)求g(x)的值域;
(3)設(shè)a>0,若對(duì)任意x1∈[0,2],總存在x∈[0,2],使g(x1)-f(x)=0,求實(shí)數(shù)a的取值范圍.
【答案】分析:(1)將a=1代入求出函數(shù)f(x)的解析式,然后求導(dǎo)數(shù),根據(jù)k=f'(3)=8,過(guò)點(diǎn)(3,6),可得到切線方程.
(2)先求出g(0)=0,然后當(dāng)x≠0時(shí),對(duì)g(x)分子分母同時(shí)除以x構(gòu)成,再由基本不等式可求出g(x)的范圍,進(jìn)而確定函數(shù)g(x)的值域.
(3)先可以確定函數(shù)g(x)的值域是函數(shù)f(x)的值域的子集,轉(zhuǎn)化為求函數(shù)f(x)在[0,2]上的值域的問(wèn)題.對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),令導(dǎo)函數(shù)等于0求出x的值,再根據(jù)導(dǎo)數(shù)判斷函數(shù)在[0,2]上的單調(diào)性,可表示出函數(shù)在[0,2]上的值域,再由函數(shù)g(x)的值域是函數(shù)f(x)的值域的子集可得到答案.
解答:解:(1)當(dāng)a=1時(shí),
∴f'(x)=x2-1,f'(3)=8
∴切線方程為y-6=8(x-3),即8x-y-18=0
(2)
x=0時(shí)g(x)=0,0<x≤2時(shí),
且g(x)>0,當(dāng)且僅當(dāng)x=1時(shí)上式取等號(hào)即,
綜上,g(x)的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025125436546254300/SYS201310251254365462543019_DA/5.png">.

(3)設(shè)函數(shù)f(x)在[0,2]上的值域是A,若對(duì)任意x1∈[0,2].
總存在x∈[0,2],使g(x1)-f(x)=0,∴[0,]⊆A
,x∈(0,2)
令f'(x)=0,得x=或x=-(舍去)
(i)時(shí),x,f'(x),f(x)的變化如下表:

.∴,解得
(ii)當(dāng)時(shí),f'(x)<0∴函數(shù)f(x)在(0,2)上單調(diào)遞減.
,∴當(dāng)x∈[0,2]時(shí),不滿足[0,]⊆A
綜上可知,實(shí)數(shù)a的取值范圍是[,1].
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的幾何意義、函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系和函數(shù)在閉區(qū)間上的最值.導(dǎo)數(shù)是高考必考題,要準(zhǔn)備充分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=x-m2+2m+3(m∈Z)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù)
(1)求函數(shù)f(x)的解析式;
(2)設(shè)函數(shù)g(x)=
1
4
f(x)+ax3+
9
2
x2-b(x∈R)
,其中a,b∈R.若函數(shù)g(x)僅在x=0處有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:函數(shù)f(x)=
1
4-x2
的定義域是A,函數(shù)g(x)=2(x-1)(x+3)(x∈定義域B)的值域是(1,+∞).
(1)若不等式2x2+mx+n<0的解集是A,求m,n的值.
(2)求集合A∪B;A∩(CRB)(R是實(shí)數(shù)集).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=xm2-2m-3(m∈N*)的圖象關(guān)于y軸對(duì)稱,且在(0,+∞)上是減函數(shù).
(1)求m的值;
(2)求滿足(1+a)-
2m
3
(1-2a)-
2m
3
的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•奉賢區(qū)一模)已知:函數(shù)f(x)=
x
ax+b
(a,b∈R,ab≠0)
,f(2)=
2
3
,f(x)=x
有唯一的根.
(1)求a,b的值;
(2)數(shù)列{an}對(duì)n≥2,n∈N總有an=f(an-1),a1=1;求證{
1
an
}
為等差數(shù)列,并求出{an}的通項(xiàng)公式.
(3)是否存在這樣的數(shù)列{bn}滿足:{bn}為{an}的子數(shù)列(即{bn}中的每一項(xiàng)都是{an}的項(xiàng))且{bn}為無(wú)窮等比數(shù)列,它的各項(xiàng)和為
1
2
.若存在,找出一個(gè)符合條件的數(shù)列{bn},寫出它的通項(xiàng)公式;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案