四棱錐中,底面為平行四邊形,側(cè)面底面.已知,,,.
(Ⅰ)證明;
(Ⅱ)求直線與平面所成角的正弦值.
(Ⅰ)見解析.(Ⅱ)
【解析】
試題分析:(Ⅰ)通過作,垂足為,連結(jié),根據(jù)側(cè)面底面,得底面.應(yīng)用三垂線定理,得.(Ⅱ)立體幾何中的角的計(jì)算,一般有兩種思路,一是直接法,通過“一作,二證,三計(jì)算”等步驟,計(jì)算角;二是“間接法”,如利用圖形與其投影的面積關(guān)系,確定角.本題首先設(shè)到平面的距離為,根據(jù),求得.進(jìn)一步確定,將角用反正弦函數(shù)表示.
試題解析:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013102623184303605707/SYS201310262319372151299326_DA.files/image015.png">,所以,
又,故為等腰直角三角形,,
由三垂線定理,得.
(Ⅱ)由(Ⅰ)知,依題設(shè),
故,由,,,得
,.
的面積.
連結(jié),得的面積
設(shè)到平面的距離為,由于,得
,
解得.
設(shè)與平面所成角為,則.
所以,直線與平面所成的角為
考點(diǎn):垂直關(guān)系、平行關(guān)系,角的計(jì)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:黑龍江省牡丹江一中10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué)(理) 題型:解答題
(本小題滿分12分)如圖,四棱錐中,底面為平行四邊形,,底面.
(1)證明:;
(2)若求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山西省高二10月月考國(guó)際班數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題12分)
如圖,四棱錐中,底面為平行四邊形 底面
(I)證明:
(II)設(shè),求棱錐的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東冠縣武訓(xùn)高中高二下學(xué)期模塊考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
如圖,四棱錐中,底面為平行四邊形,,,⊥底面.
(1)證明:平面平面;
(2)若二面角為,求與平面所成角的正弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省五校高三第三次聯(lián)考理科數(shù)學(xué)(解析版) 題型:解答題
如圖,在四棱錐中,底面為平行四邊形,底面,,,,,E在棱上, (Ⅰ) 當(dāng)時(shí),求證: 平面; (Ⅱ) 當(dāng)二面角的大小為時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省高三上學(xué)期2月月考理科數(shù)學(xué)試卷 題型:解答題
如圖,四棱錐中,底面為平行四邊形,,,⊥底面.
(1)證明:平面平面;
(2)若二面角為,求與平面所成角的正弦值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com