【題目】如圖,已知四棱錐的底面的菱形, ,點EBC邊的中點,AC和DE交于點O,PO ;

(1)求證: ;

(2) 求二面角P-AD-C的大小。

(3)在(2)的條件下,求異面直線PBDE所成角的余弦值。

【答案】(1)見解析;(2)二面角的大小為;(3)異面直線、所成角的余弦值為。

【解析】試題分析:

(1)由題意可證得,結合射影定理可證得;

(2)由題意找到二面角的平面角,結合三角函數(shù)值可得二面角的大小為.

(3)利用平移法結合余弦定理可得異面直線、所成角的余弦值為.

試題解析:

(1)在菱形中,連接是等邊三角形。

是邊的中點

平面

是斜線在底面內的射影

(2)

菱形中,

平面, 在平面內的射影

為二面角的平面角

在菱形中, ,由(1)知, 等邊三角形

邊的中點, 互相平分

的重心

在等邊三角形中,

所以在中,

二面角的大小為.

(3)取中點,連結,

所成角所成角

連結

平面, 、平面

中,

中,

中,

由(2)可知,

所成的角為

所以異面直線、所成角的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若無窮數(shù)列滿足:只要,必有,則稱具有性質.

1)若具有性質,且,求;

2)若無窮數(shù)列是等差數(shù)列,無窮數(shù)列是公比為正數(shù)的等比數(shù)列, , , 判斷是否具有性質,并說明理由;

3)設是無窮數(shù)列,已知.求證:對任意都具有性質的充要條件為是常數(shù)列”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:a>b>0的左、右焦點分別為F1F2,P為橢圓上一點(在x軸上方),連結PF1并延長交橢圓于另一點Q,設λ

(1)若點P的坐標為1,,PQF2的周長為8,求橢圓C的方程;

(2)若PF2垂直于x軸,且橢圓C的離心率e[,],求實數(shù)λ的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,右頂點為,離心離為,點滿足條件

Ⅰ)求的值.

Ⅱ)設過點的直線與橢圓相交于兩點,記的面積分別為、,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐A-BCD,△ABC是等腰直角三角形,ACBC,BC=2,AD平面BCD,AD=1.

(1)求證:平面ABC平面ACD;

(2)EAB中點,求點A到平面CED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是定義在D上的函數(shù),若對D中的任意兩數(shù)),恒有,則稱為定義在D上的C函數(shù).

(1)試判斷函數(shù)是否為定義域上的C函數(shù),并說明理由;

(2)若函數(shù)R上的奇函數(shù),試證明不是R上的C函數(shù);

(3)是定義在D上的函數(shù),若對任何實數(shù)以及D中的任意兩數(shù)),恒有,則稱為定義在D上的π函數(shù). 已知R上的π函數(shù),m是給定的正整數(shù),,,. 對于滿足條件的任意函數(shù),試求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點在圓上, 的坐標分別為, ,線段的垂直平分線交線段于點

1)求點的軌跡的方程;

2)設圓與點的軌跡交于不同的四個點,求四邊形的面積的最大值及相應的四個點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADEAB⊥平面ADE,CD=DA=6,AB=2,DE=3.

I)求棱錐C-ADE的體積;

II)求證:平面ACE⊥平面CDE;

III)在線段DE上是否存在一點F,使AF∥平面BCE?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋子里有編號為的五個球,某位教師從袋中任取兩個不同的球. 教師把所取兩球編號的和只告訴甲,其乘積只告訴乙,讓甲、乙分別推斷這兩個球的編號.

甲說:我無法確定.”

乙說:我也無法確定.”

甲聽完乙的回答以后,甲又說:我可以確定了.”

根據(jù)以上信息, 你可以推斷出抽取的兩球中

A. 一定有3號球 B. 一定沒有3號球 C. 可能有5號球 D. 可能有6號球

查看答案和解析>>

同步練習冊答案