(2013•成都模擬)已知{an}是等差數(shù)列,其前n項和為Sn,{bn}是等比數(shù)列,且a1=b1=2,a4+b4=27,S4-b4=10.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)記Tn=anb1+an-1b2+an-2b3+…+a1bn,求Tn
分析:(Ⅰ)直接設(shè)出首項和公差,根據(jù)條件求出首項和公差,即可求出通項.
(Ⅱ)法一:借助于錯位相減求和;法二:用數(shù)學歸納法求解.
解答:解:(Ⅰ)設(shè)等差數(shù)列的公差為d,等比數(shù)列的公比為q,
由a1=b1=2,得a4=2+3d,b4=2q3,s4=8+6d,
由條件a4+b4=27,s4-b4=10,
得方程組
2+3d+3q3=27
8+6d-2q3=10
,
解得
d=3
q=2
,
故an=3n-1,bn=2n,n∈N*
(Ⅱ)方法一,由(Ⅰ)得,Tn=2an+22an-1+23an-2+…+2na1;   ①;
2Tn=22an+23an-1+…+2na2+2n+1a1;     ②;
由②-①得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+2
=
12(1-2n-1)
1-2
+2n+2-6n+2
=10×2n-6n-10.(n∈N*).
方法二:數(shù)學歸納法,
③當n=1時,T1+12=a1b1+12=16,-2a1+10b1=16,故等式成立,
④假設(shè)當n=k時等式成立,即Tk+12=-2ak+10bk,
則當n=k+1時有,
Tk+1=ak+1b1+akb2+ak-1b3+…+a1bk+1
=ak+1b1+q(akb1+ak-1b2+…+a1bk
=ak+1b1+qTk
=ak+1b1+q(-2ak+10bk-12)
=2ak+1-4(ak+1-3)+10bk+1-24
=-2ak+1+10bk+1-12.
即Tk+1+12=-2ak+1+10bk+1,因此n=k+1時等式成立.
③④對任意的n∈N*,Tn+12=-2an+10bn成立.
∴Tn=-2an+10bn-12=10×2n-6n-10.(n∈N*).
點評:本題主要考察等差數(shù)列和等比數(shù)列的綜合問題.解決這類問題的關(guān)鍵在于熟練掌握基礎(chǔ)知識,基本方法.并考察計算能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)函數(shù)f(x)的定義域為D,若存在閉區(qū)間[m,n]⊆D,使得函數(shù)f(x)滿足:①f(x)在[m,n]上是單調(diào)函數(shù);②f(x)在[m,n]上的值域為[2m,2n],則稱區(qū)間[m,n]為y=f(x)的“倍值區(qū)間”.下列函數(shù)中存在“倍值區(qū)間”的有
①③④
①③④
(填上所有正確的序號)
①f(x)=x2(x≥0);②f(x)=ex(x∈R);③f(x)=
4x
x2+1
(x≥0)
;④f(x)=loga(ax-
1
8
)(a>0,a≠1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)某大學對1000名學生的自主招生水平測試成績進行統(tǒng)計,得到樣本頻率分布直方圖(如圖),則這1000名學生在該次自主招生水平測試中不低于70分的學生數(shù)是
600
600

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)已知向量
.
m
=(
3
sin
x
4
,1),
.
n
=(cos
x
4
,cos2
x
4
),f(x)=
.
m
.
n

(1)若f(x)=1,求cos(x+
π
3
)的值;
(2)在△ABC中,角A,B,C的對邊分別是a,b,c且滿足acosC+
1
2
c=b,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)若實數(shù)x,y滿足條件
x+y≥0
x-y+3≥0
0≤x≤3
,則z=2x-y的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•成都模擬)設(shè)函數(shù)f(x)=
-x,x≤0
x2,x>0
,若f(α)=4,則實數(shù)α為
-4或2
-4或2

查看答案和解析>>

同步練習冊答案