若對n個向量a1,a2,…,an存在n個不全為零的實數(shù)k1,k2,…,kn,使得k1a1+k2a2+…+knan=0成立,則稱向量a1,a2,…,an為“線性相關(guān)”.依此規(guī)定,能說明a1=(1,0),a2=(1,-1),a3=(2,2)“線性相關(guān)”的實數(shù)k1、k2、k3依次可以取_____________________________(寫出一組數(shù)值即可,不必考慮所有情況).

解析:設(shè)k1a1+k2a2+k3a3=0,

    即k1(1,0)+k2(1,-1)+k3(2,2)=(0,0).

    ∴

    ∴k1=-4k3,k2=2k3.

    取k3=1得一組k1、k2、k3依次為-4、2、1.

答案:-4、2、1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東坡區(qū)一模)已知數(shù)列{an}中,a1=6,an+1=an+1,數(shù)列{bn},點(n,bn)在過點A(0,1)的直線l上,若l上有兩點B、C,向量
BC
=(1,2).
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=2 bn,在ak與ak+1之間插入k個ck,依次構(gòu)成新數(shù)列,試求該數(shù)列的前2013項之和;
(3)對任意正整數(shù)n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:東坡區(qū)一模 題型:解答題

已知數(shù)列{an}中,a1=6,an+1=an+1,數(shù)列{bn},點(n,bn)在過點A(0,1)的直線l上,若l上有兩點B、C,向量
BC
=(1,2).
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=2 bn,在ak與ak+1之間插入k個ck,依次構(gòu)成新數(shù)列,試求該數(shù)列的前2013項之和;
(3)對任意正整數(shù)n,不等式(1+
1
b1
)(1+
1
b2
)•…•(1+
1
bn
)-a
n-2+an
≥0恒成立,求正數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省眉山市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知數(shù)列{an}中,a1=6,an+1=an+1,數(shù)列{bn},點(n,bn)在過點A(0,1)的直線l上,若l上有兩點B、C,向量=(1,2).
(1)求數(shù)列{an},{bn}的通項公式;
(2)設(shè)cn=2,在ak與ak+1之間插入k個ck,依次構(gòu)成新數(shù)列,試求該數(shù)列的前2013項之和;
(3)對任意正整數(shù)n,不等式(1+)(1+)•…•(1+)-a≥0恒成立,求正數(shù)a的范圍.

查看答案和解析>>

同步練習(xí)冊答案