分析 令t=x2-5x+6>0,求得函數(shù)的定義域,根據(jù)f(x)=$log_{\frac{1}{3}}}$t,本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域內(nèi)的減區(qū)間.
解答 解:令t=x2-5x+6>0,求得函數(shù)的定義域為{x|x<2或x>3},且f(x)=$log_{\frac{1}{3}}}$t,
故本題即求函數(shù)t在定義域內(nèi)的減區(qū)間.
再利用二次函數(shù)的性質(zhì)可得函數(shù)t在定義域{x|x<2或x>3}內(nèi)的減區(qū)間為(-∞,2),
故答案為:(-∞,2).
點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,對數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{4}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com