設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A(0,2).若線(xiàn)段FA的中點(diǎn)B在拋物線(xiàn)上,則B到該拋物線(xiàn)準(zhǔn)線(xiàn)的距離為_(kāi)_____.
依題意可知F坐標(biāo)為(
p
2
,0)
∴B的坐標(biāo)為(
p
4
,1)代入拋物線(xiàn)方程得
p2
2
=1,解得p=
2

∴拋物線(xiàn)準(zhǔn)線(xiàn)方程為x=-
2
2

所以點(diǎn)B到拋物線(xiàn)準(zhǔn)線(xiàn)的距離為
2
4
+
2
2
=
3
4
2
,
故答案為
3
4
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線(xiàn)交拋物線(xiàn)于A,B兩點(diǎn),且A,B兩點(diǎn)坐標(biāo)分別為(x1,y1)、(x2,y2),y1>0,y2<0,M是拋物線(xiàn)的準(zhǔn)線(xiàn)上的一點(diǎn),O是坐標(biāo)原點(diǎn).若直線(xiàn)MA,MF,MB的斜率分別記為:KMA=a,KMF=b,KMB=c,(如圖)
(I)若y1y2=-4,求拋物線(xiàn)的方程;
(II)當(dāng)b=2時(shí),求a+c的值;
(III)如果取KMA=2,KMB=-
12
時(shí),判定|∠AMF-∠BMF|和∠MFO的值大小關(guān)系.并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、設(shè)拋物線(xiàn)y2=2px(p>0)上一點(diǎn)A(1,2)到點(diǎn)B(x0,0)的距離等于到直線(xiàn)x=-1的距離,則實(shí)數(shù)x0的值是
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)的弦與過(guò)弦的端點(diǎn)的兩條切線(xiàn)所圍成的三角形常被稱(chēng)為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線(xiàn)的弦過(guò)焦點(diǎn),則過(guò)弦的端點(diǎn)的兩條切線(xiàn)的交點(diǎn)在其準(zhǔn)線(xiàn)上.設(shè)拋物線(xiàn)y2=2px(p>0),弦AB過(guò)焦點(diǎn),△ABQ為阿基米德三角形,則△ABQ為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)y2=2px(p>0)的焦點(diǎn)為F,其準(zhǔn)線(xiàn)與x軸的交點(diǎn)為Q,過(guò)Q點(diǎn)的直線(xiàn)l交拋物線(xiàn)于A,B兩點(diǎn).
(1)若直線(xiàn)l的斜率為
2
2
,求證:
FA
FB
=0
;
(2)設(shè)直線(xiàn)FA,F(xiàn)B的斜率分別為k1,k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)的弦與過(guò)弦的端點(diǎn)的兩條切線(xiàn)所圍成的三角形常被稱(chēng)為阿基米德三角形,阿基米德三角形有一些有趣的性質(zhì),如:若拋物線(xiàn)的弦過(guò)焦點(diǎn),則過(guò)弦的端點(diǎn)的兩條切線(xiàn)的交點(diǎn)在其準(zhǔn)線(xiàn)上.設(shè)拋物線(xiàn)y2=2px(p>0),弦AB過(guò)焦點(diǎn),△ABQ為其阿基米德三角形,則△ABQ的面積的最小值為( 。
A、
p2
2
B、p2
C、2p2
D、4p2

查看答案和解析>>

同步練習(xí)冊(cè)答案