分析 先判斷函數(shù)f(x)為奇函數(shù),則得到C,D點(diǎn)的坐標(biāo)為(-3,-1),D(-$\frac{5}{3}$,-2),即可得到OA=OC,OB=OD,則得到S△OCD=S△OAB=S△OBC=S△OCD=S,問題得以解決.
解答 解:f(x)=log2$\frac{x+1}{x-1}$,
則$\frac{x+1}{x-1}$>0,解得x<-1或x>1,
∵f(-x)=log2$\frac{-x+1}{-x-1}$=log2$\frac{x-1}{x+1}$=-log2$\frac{x+1}{x-1}$=-f(x),
∴f(x)為奇函數(shù),
∵點(diǎn)$A({3,1}),B({\frac{5}{3},2})$,
平行四邊形ABCD的四個頂點(diǎn)都在函數(shù)f(x)=log2$\frac{x+1}{x-1}$的圖象上,
∴C,D點(diǎn)的坐標(biāo)為(-3,-1),
D(-$\frac{5}{3}$,-2),
∴OA=OC,OB=OD,
∴S△OCD=S△OAB=S△OBC=S△OCD=S,
∴平行四邊形ABCD的面積為4S,
故答案為:4S
點(diǎn)評 本題考查了函數(shù)的奇偶性以及函數(shù)在幾何種的應(yīng)用,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題?x0∈R,x${\;}_{0}^{2}$+1>3x0的否定是:?x∈R,x2+1<3x | |
B. | 命題△ABC中,若A>B,則cosA>cosB的否命題是真命題 | |
C. | 平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角的充要條件是:$\overrightarrow{a}$•$\overrightarrow$<0 | |
D. | ω=1是函數(shù)f(x)=sinωx-cosωx的最小正周期為2π的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | p∨q | C. | (¬p)∧q | D. | (¬p)∨q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1” | |
B. | 若p∨(¬q)為假命題,則p∧q為假命題 | |
C. | “a≠5且b≠-5”是“a+b≠0”的充分不必要條件 | |
D. | 若命題p:?x∈R,x2+x+1≠0,則¬p:?x0∈R,${x_0}^2+{x_0}+1=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | ±1 | C. | -3 | D. | 1或-3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com