函數(shù) f(x)=的定義域?yàn)?u>              .

 

【答案】

 (1,2)∪(2,3)          

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P1(x1,y1)、P2(x2,y2)是函數(shù)f(x)=
2x
2x+
2
圖象上的兩點(diǎn),且
OP
=
1
2
(
OP1
+
OP2
)
,點(diǎn)P的橫坐標(biāo)為
1
2

(1)求證:P點(diǎn)的縱坐標(biāo)為定值,并求出這個(gè)定值;
(2)若Sn=
n
i=1
f(
i
n
),n∈N*
,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
2
)(Sn+1+
2
)
}
的前n項(xiàng)和,若Tn<a(Sn+1+
2
)
對(duì)一切n∈N*都成立,試求a的取值范圍.
an-1+1=
an
n

(1+
1
a1
)(1+
1
a2
)(1+
1
a3
)…(1+
1
an
)≤3-
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
3x
3x+
3
上兩點(diǎn)P1(x1,y1)、P2(x2,y2),若
OP
=
1
2
(
OP1
+
OP2
)
,且P點(diǎn)的橫坐標(biāo)為
1
2

(1)求證:P點(diǎn)的縱坐標(biāo)為定值,并求出這個(gè)值;
(2)若Sn=
n
i=1
f(
i
n
)
,n∈N*,求Sn;
(3)記Tn為數(shù)列{
1
(Sn+
3
2
)(Sn+1+
3
2
)
}
的前n項(xiàng)和,若Tn<a•(Sn+2+
3
2
)
對(duì)一切n∈N*都成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax+
b
x
,曲線y=f(x)在點(diǎn)M(
3
,f(
3
))
處的切線方程為2x-3y+2
3
=0

(Ⅰ)求f(x)的解析式;       
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間
(Ⅲ)證明:曲線y=f(x)上任一點(diǎn)處的切線與直線x=0和直線y=x所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•青島一模)若任意直線l過點(diǎn)F(0,1),且與函數(shù)f(x)=
1
4
x2
的圖象C于兩個(gè)不同的點(diǎn)A,B過點(diǎn)A,BC,兩切線交于點(diǎn)M
(Ⅰ)證明:點(diǎn)M縱坐標(biāo)是一個(gè)定值,并求出這個(gè)定值;
(Ⅱ)若不等式f(x)≥g(x),g(x)=alnx(a>0),求實(shí)數(shù)a取值范圍;
(Ⅲ)求證:
2ln2
22
+
2ln3
32
+
2ln4
42
+…+
2ln
n2
n-1
e
,(其中e自然對(duì)數(shù)的底數(shù),n≥2,n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

東升中學(xué)的學(xué)生王丫在設(shè)計(jì)計(jì)算函數(shù)

f(x)=的值的程序時(shí),發(fā)現(xiàn)當(dāng)sinx和cosx滿足方程2y2-(+1)y+k=0時(shí),無論輸入任意實(shí)數(shù)k,f(x)的值都不變,你能說明其中的道理嗎?這個(gè)定值是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案