某工廠生產(chǎn)甲、乙兩種產(chǎn)品,這兩種產(chǎn)品每千克的產(chǎn)值分別為600元和400元,已知每生產(chǎn)1千克甲產(chǎn)品需要A種原料4千克,B種原料2千克;每生產(chǎn)1千克乙產(chǎn)品需要A種原料2千克,B種原料3千克.但該廠現(xiàn)有A種原料100千克,B種原料120千克.問(wèn)如何安排生產(chǎn)可以取得最大產(chǎn)值,并求出最大產(chǎn)值.
【答案】分析:先設(shè)生產(chǎn)甲、乙兩種產(chǎn)品分別為x千克,y千克,其利產(chǎn)值為z元,列出約束條件,再根據(jù)約束條件畫出可行域,設(shè)z=600x+400y,再利用z的幾何意義求最值,只需求出直線z=600x+400y過(guò)可行域內(nèi)的點(diǎn)時(shí),從而得到z值即可.
解答:解析:設(shè)生產(chǎn)甲、乙兩種產(chǎn)品分別為x千克,y千克,其利產(chǎn)值為z元,
根據(jù)題意,可得約束條件為 …(3分)
作出可行域如圖:….(5分)
目標(biāo)函數(shù)z=600x+400y,
作直線l:3x+2y=0,再作一組平行于l的直線l:3x+2y=z,當(dāng)直線l經(jīng)過(guò)P點(diǎn)時(shí)z=600x+400y取得最大值,….(9分)
,解得交點(diǎn)P( 7.5,35)….(12分)
所以有z最大=600×7.5+400×35=18500(元)…(13分)
所以生產(chǎn)甲產(chǎn)品7.5千克,乙產(chǎn)品35千克時(shí),總產(chǎn)值最大,為18500元.…(14分)
點(diǎn)評(píng):本題是一道方案設(shè)計(jì)題型,考查了列一元一次不等式組解實(shí)際問(wèn)題的運(yùn)用及一元一次不等式組的解法的運(yùn)用,解答時(shí)找到題意中的不相等關(guān)系是建立不等式組的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,甲產(chǎn)品的一等品率為80%,二等品率為20%;乙產(chǎn)品的一等品率為90%,二等品率為10%.生產(chǎn)1件甲產(chǎn)品,若是一等品則獲得利潤(rùn)4萬(wàn)元,若是二等品則虧損1萬(wàn)元;生產(chǎn)1件乙產(chǎn)品,若是一等品則獲得利潤(rùn)6萬(wàn)元,若是二等品則虧損2萬(wàn)元.設(shè)生產(chǎn)各種產(chǎn)品相互獨(dú)立.
(1)記X(單位:萬(wàn)元)為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品可獲得的總利潤(rùn),求X的分布列;
(2)求生產(chǎn)4件甲產(chǎn)品所獲得的利潤(rùn)不少于10萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

18、某工廠生產(chǎn)甲、乙兩種產(chǎn)品,每種產(chǎn)品都是經(jīng)過(guò)第一道和第二道工序加工而成,兩道工序的加工結(jié)果相互獨(dú)立,每道工序的加工結(jié)果均有A、B兩個(gè)等級(jí),對(duì)每種產(chǎn)品,兩道工序的加工結(jié)果都為A級(jí)時(shí),產(chǎn)品為一等品,其余均為二等品
(1)已知甲、乙兩種產(chǎn)品每一道工序的加工結(jié)果為A級(jí)的概率如表一所示,分別求生產(chǎn)的甲、乙產(chǎn)品為一等品的概率P、P;
(2)已知一件產(chǎn)品的利潤(rùn)如表二所示,用ξ、η分別表示一件甲、乙產(chǎn)品的利潤(rùn),在(1)的條件下,分別求甲、乙兩種產(chǎn)品利潤(rùn)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品.已知生產(chǎn)一噸甲產(chǎn)品、一噸乙產(chǎn)品所需要的煤、電以及產(chǎn)值如表所示;
用煤(噸) 用電(千瓦) 產(chǎn)值(萬(wàn)元)
生產(chǎn)一噸甲種產(chǎn)品 7 2 8
生產(chǎn)一噸乙種產(chǎn)品 3 5 11
又知道國(guó)家每天分配給該廠的煤和電力有限制,每天供煤至多56噸,供電至多45千瓦.問(wèn)該廠如何安排生產(chǎn),才能使該廠日產(chǎn)值最大?最大的產(chǎn)值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,這兩種產(chǎn)品每千克的產(chǎn)值分別為600元和400元,已知每生產(chǎn)1千克甲產(chǎn)品需要A種原料4千克,B種原料2千克;每生產(chǎn)1千克乙產(chǎn)品需要A種原料2千克,B種原料3千克.但該廠現(xiàn)有A種原料100千克,B種原料120千克.問(wèn)如何安排生產(chǎn)可以取得最大產(chǎn)值,并求出最大產(chǎn)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠生產(chǎn)甲、乙兩種產(chǎn)品,已知生產(chǎn)每噸甲產(chǎn)品所需電力4千瓦時(shí)、勞力6個(gè),獲得利潤(rùn)5百元;生產(chǎn)每噸乙產(chǎn)品所需電力5千瓦時(shí)、勞力4個(gè),獲得利潤(rùn)4百元;每天資源限額(最大供應(yīng)量)分別為電力202千瓦時(shí)、勞動(dòng)力240個(gè).
問(wèn):每天生產(chǎn)甲、乙兩種產(chǎn)品各多少噸,獲得利潤(rùn)總額最大?最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案