11.求與橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$有相同的焦點(diǎn),且兩準(zhǔn)線間的距離為$\frac{10}{3}$的雙曲線方程.

分析 求出雙曲線的焦點(diǎn)坐標(biāo),利用兩準(zhǔn)線間的距離為$\frac{10}{3}$,求出a,b,即可求出雙曲線方程.

解答 解:由題意,雙曲線的焦點(diǎn)坐標(biāo)為(0,±3),即c=3,
∵$\frac{2{a}^{2}}{c}$=$\frac{10}{3}$,∴a=$\sqrt{5}$,∴b=2,
∴雙曲線方程為$\frac{{y}^{2}}{5}-\frac{{x}^{2}}{4}$=1.

點(diǎn)評 熟練掌握圓錐曲線的標(biāo)準(zhǔn)方程及其性質(zhì)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.對數(shù)函數(shù)f(x)=log3(2x+1)的反函數(shù)是g(x),g(2)=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等比數(shù)列{an}前四項(xiàng)和為1,前8項(xiàng)和為17,則它的公比為( 。
A.2B.-2C.2或-2D.2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.一個(gè)多面體的直觀圖(圖1)及三視圖(圖2)如圖所示,其中M、N分別是AF、BC的中點(diǎn),
(1)求證:MN∥平面CDEF;
(2)求點(diǎn)B到平面MNF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇.2016年雙十一期間,某購物平臺的銷售業(yè)績高達(dá)516億人民幣,與此同時(shí),相關(guān)管理部門推出了針對電商的商品和服務(wù)的評價(jià)體系現(xiàn)從評價(jià)系統(tǒng)中選出200次成功交易,并對其評價(jià)進(jìn)行統(tǒng)計(jì),對商品的好評率為0.6,對服務(wù)的好評率為0.75.其中對商品和服務(wù)都做出好評的交易為80次.
(1)先完成關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表,再判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下,以為商品好評與服務(wù)好評有關(guān)?
(2)若用分層抽樣的方法從“對商品好評”和“商品不滿意”中抽出5次交易,再從這5次交易中選出2次,求恰有一次為“商品好評”的概率.
附臨界值表:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.89710.828
k2的觀測值:$k=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
關(guān)于商品和服務(wù)評價(jià)的2×2列聯(lián)表:
對服務(wù)好評對服務(wù)不滿意合計(jì)
對商品好評a=80b=40120
對商品不滿意c=70d=1080

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.三個(gè)數(shù)a=(-0.3)0,b=0.32,c=20.3的大小關(guān)系為( 。
A.a<b<0B.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.有下列四個(gè)命題:
①已知A,B,C,D是空間任意四點(diǎn),則$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{CD}$+$\overrightarrow{DA}$=0;
②若兩個(gè)非零向量$\overrightarrow{AB}$與$\overrightarrow{CD}$滿足$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$,則$\overrightarrow{AB}$‖$\overrightarrow{CD}$;
③分別表示空間向量的有向線段所在的直線是異面直線,則這兩個(gè)向量不是共面向量;
④對于空間的任意一點(diǎn)O和不共線的三點(diǎn)A,B,C,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(x,y,z∈R),則P,A,B,C四點(diǎn)共面.
其中正確命題有②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知數(shù)列{an}中,${a_1}=\frac{3}{4}$,${a_n}=1-\frac{1}{{{a_{n-1}}}}$(n≥2),則a2016=( 。
A.$\frac{3}{4}$B.$-\frac{1}{3}$C.$-\frac{3}{4}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.對甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(m/s)的數(shù)據(jù)如表.
273830373531
33  2938342836
(1)畫出莖葉圖
(2)判斷選誰參加比賽更合適.

查看答案和解析>>

同步練習(xí)冊答案