如圖,正三棱柱ABC-A1B1C1的底面邊長為a,側(cè)棱長為
(1)建立適當(dāng)?shù)淖鴺?biāo)系,并寫出點(diǎn)A,B,A1,C1的坐標(biāo);
(2)求AC1與側(cè)面ABB1A1所成的角.

【答案】分析:(1)以點(diǎn)A為坐標(biāo)原點(diǎn)O,以AB所成直線為Oy軸,以AA1所在直線為Oz軸,以經(jīng)過原點(diǎn)且與平面ABB1A1垂直的直線為Ox軸,建立空間直角坐標(biāo)系,可求出A,B,A1,C1的坐標(biāo);
(2)取A1B1的中點(diǎn)M,易證AC1與AM所成的角就是AC1與側(cè)面ABB1A1所成的角,求出的坐標(biāo),利用向量的夾角公式求出此角即可.
解答:解:①如圖,以點(diǎn)A為坐標(biāo)原點(diǎn)O,以AB所成直線為Oy軸,
以AA1所在直線為Oz軸,以經(jīng)過原點(diǎn)且與平面ABB1A1垂直的直線為Ox軸,建立空間直角坐標(biāo)系.
由已知得A(0,0,0),B(0,a,0),,
②坐標(biāo)系如上,取A1B1的中點(diǎn)M,于是有,
連AM,MC1=,
=(0,a,0),=,
=0,=0,
所以,MC1⊥面ABB1A1
∴AC1與AM所成的角就是AC1與側(cè)面ABB1A1所成的角.
=,=,
=,===,
=
所以,所成的角,即AC1與側(cè)面ABB1A1所成的角為30°.
點(diǎn)評:本題主要考查了直線與平面之間的位置關(guān)系,考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長都等于a,E是BB1的中點(diǎn).
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長都2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點(diǎn)O為AB1上的動點(diǎn),當(dāng)OD∥平面ABC時,求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點(diǎn).
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案