已知?jiǎng)狱c(diǎn)M(x,y)在曲線C上,點(diǎn)M與定點(diǎn)F(1,0)的距離和它到直線m:x=4的距離的比是
12

(1)求曲線C的方程;
(2)點(diǎn)E(-1,0),∠EMF的外角平分線所在直線為l,直線EN垂直于直線l,且交FM的延長(zhǎng)線于點(diǎn)N.試求點(diǎn)P(1,8)與點(diǎn)N連線的斜率k的取值范圍.
分析:(1)由點(diǎn)到直線的距離公式與兩點(diǎn)的距離公式,結(jié)合題意建立關(guān)于x、y的等式,化簡(jiǎn)整理得
x2
4
+
y2
3
=1
,即為所求曲線C的方程;
(2)根據(jù)曲線C的方程利用橢圓的定義,結(jié)合題意算出點(diǎn)N的軌跡是以F為圓心、4為半徑的圓,可得圓心F到直線PN的距離小于等于半徑,因此設(shè)出直線NP方程并利用點(diǎn)到直線的距離公式列式,解之即可得到k的取值范圍.
解答:解:(1)設(shè)點(diǎn)M到直線m:x=4的距離為d,
根據(jù)題意,可得
|MF|
d
=
1
2

(x-1)2+y2
|x-4|
=
1
2
,化簡(jiǎn)得
x2
4
+
y2
3
=1

∴曲線C的方程是
x2
4
+
y2
3
=1
;    
(2)由(1)得曲線C是E(-1,0)、F(1、0)為焦點(diǎn)的雙曲線,2a=4.
根據(jù)題意,可知|ME|=|MN|,
∵|ME|+|MF|=2a,∴|NF|=|MN|+|MF|=4
∴點(diǎn)N的軌跡是以F(1,0)為圓心,4為半徑的圓.
又∵直線PN的方程為:y-8=k(x-1),即kx-y+8-k=0.
∴圓心F到直線PN的距離d小于等于半徑,可得
|k+8-k|
k2+1
≤4
,
解之得k≤-
3
k≥
3
,可得斜率k的取值范圍是(-∞,-
3
]∪[
3
,+∞).
點(diǎn)評(píng):本題給出動(dòng)點(diǎn)M滿足的條件,求M的軌跡方程并依此求動(dòng)直線斜率的取值范圍.著重考查了直線的基本量與基本形式、兩點(diǎn)間的距離公式與點(diǎn)到直線的距離公式、橢圓的定義與標(biāo)準(zhǔn)方程和直線與圓錐曲線位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知?jiǎng)狱c(diǎn)M(x,y)和N(-4,y)滿足
OM
ON

(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)若過點(diǎn)D(1,-1)的直線與軌跡交C于A、B兩點(diǎn),且D為線段AB的中點(diǎn),求此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)滿足5
(x-1)2+(y-2)2
=|3x+4y+12|
,則M點(diǎn)的軌跡曲線為
拋物線
拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)到定點(diǎn)F(0,1)的距離等于它到定直線l:y+1=0的距離
(1)求點(diǎn)M的軌跡方程
(2)經(jīng)過點(diǎn)F,傾斜角為30°的直線m交M的軌跡于A、B兩點(diǎn),求|AB|
(3)設(shè)過點(diǎn)G(0,4)的直線n交M的軌跡于C(x1,y1),D(x2,y2),O為坐標(biāo)原點(diǎn).證明:OC⊥OD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M(x,y)到定點(diǎn)O(0,0)與到定點(diǎn)A(3,0)的距離之比為
12

(1)求動(dòng)點(diǎn)M的軌跡C的方程,并指明曲線C的軌跡;
(2)設(shè)直線l:y=x+b,若曲線C上恰有三個(gè)點(diǎn)到直線l的距離為1,求實(shí)數(shù)b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案