已知三次函數(shù)為實(shí)常數(shù)。
(1)若時(shí),求函數(shù)的極大、極小值;
(2)設(shè)函數(shù),其中的導(dǎo)函數(shù),若的導(dǎo)函數(shù)為,,軸有且僅有一個(gè)公共點(diǎn),求的最小值.
(1),;(2)2.

試題分析:(1)當(dāng)時(shí),得到,求其導(dǎo)函數(shù),列表得到函數(shù)的單調(diào)區(qū)間,進(jìn)而可得函數(shù)的極值;(2)由函數(shù)求導(dǎo),得到,,再由軸有且僅有一個(gè)公共點(diǎn),得到,利用基本不等式,即可得到的最小值.
試題解析:(1)
,,














極大值

極小值


(2),
,

法一:,


當(dāng)時(shí),
當(dāng)時(shí),,
法二:
,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

定義在R上的函數(shù)同時(shí)滿足以下條件:
在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
是偶函數(shù);
在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)的解析式;
(2)設(shè)g(x)=,若存在實(shí)數(shù)x∈[1,e],使g(x)<,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若以函數(shù)圖像上任意一點(diǎn)為切點(diǎn)的切線的斜率恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)若函數(shù)存在極大值和極小值,求的取值范圍;
(2)設(shè)分別為的極大值和極小值,其中的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,其中有一個(gè)是函數(shù)f(x)=x3+ax2+(a2-1)x+1(a∈R,a≠0)的導(dǎo)函數(shù)f′(x)的圖象,則f(-1)為(  )
A.2B.-C.3D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)=x3+ax2+bx+a2在x=1處有極值為10,則a+b=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),且,則當(dāng)時(shí), 的取值范圍是  (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù)f(x)的導(dǎo)數(shù)為,且,則___.

查看答案和解析>>

同步練習(xí)冊(cè)答案