已知函數(shù)f(x)=x3-(4a-3)x2+4a(a-1)x?(a∈R).
(I)當(dāng)a=2時(shí),求函數(shù)f(x)在區(qū)間[1,2]上的最大、最小值;
(II)若函數(shù)f(x)在區(qū)間(1,2)上不單調(diào),求實(shí)數(shù)a的取值范圍.
【答案】
分析:(I)把a(bǔ)=2代入,對函數(shù)求導(dǎo),分別令f′(x)>0,f′(x)<0,解不等式可求解出函數(shù)的單調(diào)區(qū)間,進(jìn)一步求函數(shù)的極值,然后比較極值與端點(diǎn)值,找出函數(shù)的最值
(II)函數(shù)f(x)在區(qū)間(1,2)上不單調(diào)?f'(x)=0在(1,2)上有實(shí)根,且無重根,結(jié)合二次函數(shù)在(1,2)上的圖象求解
解答:(本小題滿分12分)
解:(I)當(dāng)a=2時(shí),f(x)=x
3-5x
2+8xf'(x)=3x
2-10x+8
令f'(x)=0得3x
2-10x+8=0,x
1=
,x
2=2(2分)f(x)在[1,2]上變化如表
由上表知,f(x)在
上單調(diào)遞增,在
上單調(diào)遞減
∴
∵f(1)=f(2)=4
∴f(x)
min=4(6分)
(II)f'(x)=3x
2-2(4a-3)x+4a(a-1)
若函數(shù)f(x)在(1,2)上不單調(diào),則方程f'(x)=0在(1,2)上有實(shí)根,且無重根(8分)
由f'(x)=3x
2-2(4a-3)x+4a(a-1)=0
解得
則
或
(10分)
解得
(12分)
點(diǎn)評:本題考查了利用導(dǎo)數(shù)求最值,其步驟:①對函數(shù)求導(dǎo)②分別解不等式f′(x)>0,f′(x)<0,寫出函數(shù)的單調(diào)區(qū)間③結(jié)合單調(diào)區(qū)間求函數(shù)的極值④計(jì)算端點(diǎn)值,與極值比較,找出最值