(本小題共12分)水庫的蓄水量隨時(shí)間而變化,現(xiàn)用t表示時(shí)間,以月為單位,年初為起點(diǎn),根據(jù)歷年數(shù)據(jù),某水庫的蓄水量(單位:億立方米)關(guān)于t的近似函數(shù)關(guān)系式為
V(t)=
(Ⅰ)該水庫的蓄水量小于50的時(shí)期稱為枯水期.以i-1<t<i表示第i月份(i=1,2,…,12),問一年內(nèi)哪幾個(gè)月份是枯水期?
(Ⅱ)求一年內(nèi)該水庫的最大蓄水量(取e=2.7計(jì)算).
(Ⅰ)枯水期為1月,2月,,3月,4月,11月,12月共6個(gè)月.
(Ⅱ)一年內(nèi)該水庫的最大蓄水量是108.32億立方米
【解析】
試題分析:(1)分段求出水庫的蓄求量小于50時(shí)x的取值范圍,注意實(shí)際問題x要取整.
(2)一年內(nèi)該水庫的最大蓄水量肯定不在枯水期,則V(t)的最大值只能在(4,10)內(nèi)達(dá)到,然后通過導(dǎo)數(shù)在給定區(qū)間上研究V(t)的最大值,最后注意作答
解:(Ⅰ)①當(dāng)0<t10時(shí),V(t)=(-t2+14t-40)化簡得t2-14t+40>0,
解得t<4,或t>10,又0<t10,故0<t<4.
②當(dāng)10<t12時(shí),V(t)=4(t-10)(3t-41)+50<50,化簡得(t-10)(3t-41)<0,
解得10<t<,又10<t12,故 10<t12 .綜合得0<t<4,或10<t12,
故知枯水期為1月,2月,,3月,4月,11月,12月共6個(gè)月.
(Ⅱ)(Ⅰ)知:V(t)的最大值只能在(4,10)內(nèi)達(dá)到.
由V′(t)= 令V′(t)=0,解得t=8(t=-2舍去).
當(dāng)t變化時(shí),V′(t) 與V (t)的變化情況如下表:
t |
(4,8) |
8 |
(8,10) |
V′(t) |
+ |
0 |
- |
V(t) |
極大值 |
由上表,V(t)在t=8時(shí)取得最大值V(8)=8e2+50-108.52(億立方米).
故知一年內(nèi)該水庫的最大蓄水量是108.32億立方米
考點(diǎn):本題主要是考查函數(shù)、導(dǎo)數(shù)和不等式等基本知識(shí),考查用導(dǎo)數(shù)求最值和綜合運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題能力.
點(diǎn)評(píng):解決該試題的關(guān)鍵是一元二次不等式的求解以及運(yùn)用導(dǎo)數(shù)的思想來判定函數(shù) 單調(diào)性,進(jìn)而得到極值,求解最值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆廣東省陸豐市高二第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共12分)已知函數(shù).
(Ⅰ)求的最小正周期;
(Ⅱ)求在區(qū)間上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省河西五市高三第一次聯(lián)考數(shù)學(xué)理卷 題型:解答題
(本小題共12分)
已知拋物線C:上橫坐標(biāo)為4的點(diǎn)到焦點(diǎn)的距離為5.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)直線與拋物線C交于兩點(diǎn),,且(,且為常數(shù)).過弦AB的中點(diǎn)M作平行于軸的直線交拋物線于點(diǎn)D,連結(jié)AD、BD得到.
(1)求證:;
(2)求證:的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省2009-2010學(xué)年度第二學(xué)期二調(diào)考試高一年級(jí)數(shù)學(xué)試卷理科 題型:解答題
(本小題共12分)已知數(shù)列的前n項(xiàng)和,其中是首項(xiàng)為1,公差為2的等差數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前n項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2009-2010學(xué)年度第二學(xué)期二調(diào)考試高一年級(jí)數(shù)學(xué)試卷理科 題型:解答題
(本小題共12分)已知數(shù)列的前n項(xiàng)和,其中是首項(xiàng)為1,公差為2的等差數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;高@考☆資&源*網(wǎng)
(2)若,求數(shù)列的前n項(xiàng)和
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com