已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓相交于兩點(diǎn),且,試判斷的面積是否為定值?若為定值,求出定值;若不為定值,說(shuō)明理由.

 

(1).(2)為定值.

【解析】

試題分析:(1)由已知建立方程組,求得.

(2)設(shè),由

,根據(jù),得.應(yīng)用韋達(dá)定理得到

根據(jù),,,

得到,從而有

,計(jì)算得到

試題解析:(1)由題意知,∴,即,

,∴,

故橢圓的方程為. 4分

(2)設(shè),由

,.

7分

,,,

,

12分

考點(diǎn):橢圓的幾何性質(zhì),直線與橢圓的位置關(guān)系,函數(shù)的單調(diào)性與最值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練二(解析版) 題型:填空題

已知各項(xiàng)不為零的等差數(shù)列{an}的前n項(xiàng)和為S n.若m∈N*,且am-1+am+1-am2=0,S2m-1=38,則m=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省武威市高三數(shù)學(xué)專題訓(xùn)練選擇填空限時(shí)練一(解析版) 題型:選擇題

滿足z(2-i)=2+i(i為虛數(shù)單位)的復(fù)數(shù)z在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限為(  )

A.第一象限 B.第二象限

C.第三象限 D.第四象限

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知某幾何體的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長(zhǎng)為4的等腰直角三角形,正視圖為直角梯形,則此幾何體的體積為( ).

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

,,則中元素個(gè)數(shù)為( ).

A.0 B.1 C.2 D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

在三棱柱中側(cè)棱垂直于底面,,,且三棱柱的體積為3,則三棱柱的外接球的表面積為.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅省張掖市高三第三次診斷考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)f(x)=sin xcos x+cos 2x的最小正周期和振幅分別是( ) .

A.π,1 B.π,2 C.2π,1 D.2π,2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省高三十三校聯(lián)考第二次考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

設(shè),則的最小值為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖南省長(zhǎng)沙市高考二模理科數(shù)學(xué)試卷(解析版) 題型:選擇題

若兩條異面直線所成的角為,則稱這對(duì)異面直線為“黃金異面直線對(duì)”,在連接正方體各頂點(diǎn)的所有直線中,“黃金異面直線對(duì)”共有( )

A.12對(duì) B.18對(duì) C.24 對(duì) D.30對(duì)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案