若平面向量與,,,則與的夾角為( )
A. | B. | C. | D. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)O點(diǎn)在△ABC內(nèi)部,且有++2=0,則△ABC的面積與△AOC的面積的比值為( )
A.4 | B. | C.2 | D.3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知E為△ABC的邊BC的中點(diǎn),△ABC所在平面內(nèi)有一點(diǎn)P,滿足=0,設(shè)=λ,則λ的值為( )
A.2 |
B.1 |
C. |
D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在平面斜坐標(biāo)系中,軸方向水平向右,方向指向左上方,且,平面上任一點(diǎn)關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若(其中向量分別是與軸、軸同方向的單位向量),則點(diǎn)斜坐標(biāo)為,那么以為頂點(diǎn),為焦點(diǎn),軸為對稱軸的拋物線方程為
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)e1,e2,e3,e4是某平面內(nèi)的四個(gè)單位向量,其中e1⊥e2,e3與e4的夾角為45°,對這個(gè)平面內(nèi)的任意一個(gè)向量a=xe1+ye2,規(guī)定經(jīng)過一次“斜二測變換”得到向量a1=xe3+e4.設(shè)向量t1=-3e3-2e4是經(jīng)過一次“斜二測變換”得到的向量,則|t|是( )
A.5 | B. | C.73 | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知平面向量a=(x1,y1),b=(x2,y2),若|a|=2,|b|=3,a·b=-6,則的值為( )
A. | B.- | C. | D.- |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知a,b是單位向量,a·b=0,若向量c滿足|c-a-b|=1,則|c|的取值范圍是( )
A.[-1,+1] | B.[-1,+2] |
C.[1,+1] | D.1,+2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com