12、奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(x+2)=-f(x)成立,且f(1)=8,則f(2008)+f(2009)+f(2010)的值為( 。
分析:根據(jù)對(duì)任意x∈R都有f(x+2)=-f(x)成立,得到f(x+4)=-f(x+2)=f(x),求出函數(shù)f(x)周期為4,要求f(2008)+f(2009)+f(2010),即要求f(0)+f(1)+f(2)的值,而由函數(shù)f(x)是R上的奇函數(shù),可得f(0),根據(jù)f(x+2)=-f(x),令x=0,可求得f(2)的值,從而求得結(jié)論.
解答:解:∵對(duì)任意x∈R都有f(x+2)=-f(x)成立,
∴f(x+4)=-f(x+2)=f(x),
∴函數(shù)f(x)的周期為4,
∵函數(shù)f(x)是R上的奇函數(shù),且f(1)=8,
∴f(0)=0,f(2)=-f(0)=0,
∴f(2008)+f(2009)+f(2010)=f(0)+f(1)+f(2)=8.
故選D.
點(diǎn)評(píng):此題是個(gè)中檔題.考查函數(shù)的周期性和奇偶性,是道綜合題,其中探討函數(shù)的周期性是難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,則f(2010)+f(2011)+f(2012)的值為
-9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(2+x)+f(2-x)=0,且f(1)=9,則f(2010)+f(2011)+f(2012)的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

奇函數(shù)f(x)滿足對(duì)任意x∈R都有f(4+x)+f(-x)=0,且f(1)=9則f(2011)+f(2012)+f(2013)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•日照一模)已知定義在R上奇函數(shù)f(x)滿足①對(duì)任意x,都有f(x+3)=f(x)成立;②當(dāng)x∈[0,
3
2
]
時(shí)f(x)=
3
2
-|
3
2
-2x|
,則f(x)=
1
|x|
在[-4,4]上根的個(gè)數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案