已知函數(shù)的圖象在點(diǎn)處的切線斜率為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)判斷方程根的個(gè)數(shù),證明你的結(jié)論;
(Ⅲ)探究:是否存在這樣的點(diǎn),使得曲線在該點(diǎn)附近的左、右的兩部分分別位于曲線在該點(diǎn)處切線的兩側(cè)?若存在,求出點(diǎn)A的坐標(biāo);若不存在,說(shuō)明理由.
(1)
(2)方程有且只有一個(gè)實(shí)根.
(3)存在唯一點(diǎn)使得曲線在點(diǎn)附近的左、右兩部分分別
位于曲線在該點(diǎn)處切線的兩側(cè).
解析試題分析:解法一:(Ⅰ)因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/54/1/1kiam2.png" style="vertical-align:middle;" />,所以,
函數(shù)的圖象在點(diǎn)處的切線斜率.
由得:. 4分
(Ⅱ)由(Ⅰ)知,,令.
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/ee/2/15gvi4.png" style="vertical-align:middle;" />,,所以在至少有一個(gè)根.
又因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/fc/4/1hckc3.png" style="vertical-align:middle;" />,所以在上遞增,
所以函數(shù)在上有且只有一個(gè)零點(diǎn),即方程有且只有一
個(gè)實(shí)根. 7分
(Ⅲ)證明如下:
由,,可求得曲線在點(diǎn)處的切
線方程為,
即. 8分
記
,
則. 11分
(1)當(dāng),即時(shí),對(duì)一切成立,
所以在上遞增.
又,所以當(dāng)時(shí),當(dāng)時(shí),
即存在點(diǎn),使得曲線在點(diǎn)A附近的左、右兩部分分別位于曲線
在該點(diǎn)處切線的兩側(cè). 12分
(2)當(dāng),即時(shí),
時(shí),;時(shí),;
時(shí),.
故在上單調(diào)遞減,在上單調(diào)遞增.
又,所以當(dāng)時(shí),;當(dāng)時(shí),,
即曲線在點(diǎn)附近的左、右兩部分都位于曲線在該點(diǎn)處切線的
同側(cè). 13分
(3)當(dāng),即
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(其中,),且函數(shù)的圖象在點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿(mǎn)足,求實(shí)數(shù)的取值范圍;
(Ⅲ)若,試探究與的大小,并說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知 函數(shù)
(1)已知任意三次函數(shù)的圖像為中心對(duì)稱(chēng)圖形,若本題中的函數(shù)圖像以為對(duì)稱(chēng)中心,求實(shí)數(shù)和的值
(2)若,求函數(shù)在閉區(qū)間上的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)若,試求函數(shù)的單調(diào)區(qū)間;
(2)過(guò)坐標(biāo)原點(diǎn)作曲線的切線,證明:切點(diǎn)的橫坐標(biāo)為1;
(3)令,若函數(shù)在區(qū)間(0,1]上是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在點(diǎn)處取得極小值-4,使其導(dǎo)數(shù)的的取值范圍為,求:
(1)的解析式;
(2),求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在點(diǎn)處取得極小值-4,使其導(dǎo)數(shù)的的取值范圍為,求:
(1)的解析式;
(2),求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的導(dǎo)數(shù)為實(shí)數(shù),.
(Ⅰ)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的條件下,求經(jīng)過(guò)點(diǎn)且與曲線相切的直線的方程;
(Ⅲ)設(shè)函數(shù),試判斷函數(shù)的極值點(diǎn)個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,,直線與函數(shù)、的圖象都相切,且與函數(shù)的圖象的切點(diǎn)的橫坐標(biāo)為.
(Ⅰ)求直線的方程及的值;
(Ⅱ)若(其中是的導(dǎo)函數(shù)),求函數(shù)的最大值;
(Ⅲ)當(dāng)時(shí),求證:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com