將數(shù)列{an-1}按“第n組有n個(gè)數(shù)(n∈N*)”的規(guī)則分組如下:(1),(2,4),(8,16,32),…,則第100組中的第一個(gè)數(shù)是

[  ]

A.24951

B.24950

C.25051

D.25050

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知整數(shù)數(shù)列{an}滿足:a1=1,a2=2,且2an-1<an-1+an+1<2an+1(n∈N,n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)將數(shù)列{an}中的所有項(xiàng)依次按如圖所示的規(guī)律循環(huán)地排成如下三角形數(shù)表:
精英家教網(wǎng)

依次計(jì)算各個(gè)三角形數(shù)表內(nèi)各行中的各數(shù)之和,設(shè)由這些和按原來行的前后順序構(gòu)成的數(shù)列為{bn},求b5+b100的值;
(3)令cn=2+ban+b•2an-1(b為大于等于3的正整數(shù)),問數(shù)列{cn}中是否存在連續(xù)三項(xiàng)成等比數(shù)列?若存在,求出所有成等比數(shù)列的連續(xù)三項(xiàng);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的公差為-1,且a2+a7+a12=-6,
(1)求數(shù)列{an}的通項(xiàng)公式an與前n項(xiàng)和Sn
(2)將數(shù)列{an}的前4項(xiàng)抽去其中一項(xiàng)后,剩下三項(xiàng)按原來順序恰為等比數(shù)列{bn}的前3項(xiàng),記{bn}的前n項(xiàng)和為Tn,若存在m∈N*,使對(duì)任意n∈N*總有Sn<Tm+λ恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}滿足:Sn=
an24
+n
,an>0.
(1)求{an}的表達(dá)式;
(2)將數(shù)列{an}依次按1項(xiàng),2項(xiàng),3項(xiàng)循環(huán)地分為(a1),(a2,a3),(a4,a5,a6),(a7),(a8,a9),(a10,a11,a12),
…,分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為{bn},求b2010的值;
(3)如果將數(shù)列{an}依次按1項(xiàng),2項(xiàng),3項(xiàng),…,m(m≥3)項(xiàng)循環(huán);分別計(jì)算各個(gè)括號(hào)內(nèi)各數(shù)之和,設(shè)由這些和按原來括號(hào)的前后順序構(gòu)成的數(shù)列為{bn},提出同(2)類似的問題((2)應(yīng)當(dāng)作為特例),并進(jìn)行研究,你能得到什么樣的結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正整數(shù)數(shù)列{an}滿足:a1=1,an+1=
an-n,an>n
an+n,an≤n.

(Ⅰ)寫出數(shù)列{an}的前5項(xiàng);
(Ⅱ)將數(shù)列{an}中所有值為1的項(xiàng)的項(xiàng)數(shù)按從小到大的順序依次排列,得到數(shù)列{nk},試用nk表示nk+1(不必證明);
(Ⅲ)求最小的正整數(shù)n,使an=2013.

查看答案和解析>>

同步練習(xí)冊(cè)答案