已知矩陣,若矩陣A屬于特征值3的一個(gè)特征向量為,屬于特征值﹣1的一個(gè)特征向量為,則矩陣A= .

 

【解析】

試題分析:根據(jù)特征值的定義可知Aα=λα,利用待定系數(shù)法建立四個(gè)等式關(guān)系,解四元一次方程組即可.

【解析】
由矩陣A屬于特征值3的一個(gè)特征向量為 可得 =3 ,

;(4分)

由矩陣A屬于特征值﹣1的一個(gè)特征向量為 ,可得 =(﹣1),

,(6分)

解得 ,即矩陣A=.(10分)

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2015年人教A版選修1-1 3.4生活中的優(yōu)化問題舉例練習(xí)卷(解析版) 題型:解答題

用長為90cm,寬為48cm的長方形鐵皮做一個(gè)無蓋的容器,先在四角分別截去一個(gè)小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖),問該容器的高為多少時(shí),容器的容積最大?最大容積是多少?

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2015人教B版選修4-5 3.2用數(shù)學(xué)歸納法證明不等式練習(xí)卷(解析版) 題型:填空題

用數(shù)學(xué)歸納法證明+cosα+cos3α+…+cos(2n﹣1)α=(k∈Z*,α≠kπ,n∈N+),在驗(yàn)證n=1時(shí),左邊計(jì)算所得的項(xiàng)是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2015人教A版必修二2.1空間點(diǎn)、直線、平面間位置關(guān)系練習(xí)卷(解析版) 題型:

在三棱柱ABC﹣A1B1C1中,各棱長相等,側(cè)棱垂直于底面,點(diǎn)D是側(cè)面BB1C1C的中心,則AD與平面BB1C1C所成角的大小是( )

A.30° B.45° C.60° D.90°

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

選修4﹣2:矩陣與變換已知二階矩陣M有特征值λ=3及對應(yīng)的一個(gè)特征向量,并且矩陣M對應(yīng)的變換將點(diǎn)(﹣1,2)變換成(3,0),求矩陣M.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-2 4.1變換的不變量 矩陣特征向量(解析版) 題型:填空題

矩陣A=的一個(gè)特征值為λ,是A的屬于特征值λ的一個(gè)特征向量,則A﹣1= .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:填空題

(2014•咸陽一模)(選修4﹣1 幾何證明選講)如圖,兩個(gè)等圓⊙O與⊙O′外切,過O作⊙O′的兩條切線OA,OB,A,B是切點(diǎn),點(diǎn)C在圓O′上且不與點(diǎn)A,B重合,則∠ACB= .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.3圓的切線性質(zhì)及判定定理練習(xí)(解析版) 題型:選擇題

如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC為直徑的圓交AB于D,則AD的長為( )

A. B. C. D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-2 3.2復(fù)數(shù)的四則運(yùn)算練習(xí)卷(解析版) 題型:填空題

若將復(fù)數(shù)表示為a+bi(a,b∈R,i是虛數(shù)單位)的形式,則a+b= .

 

查看答案和解析>>

同步練習(xí)冊答案