A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
分析 當(dāng)a<1時,f(a)=$sin\frac{aπ}{3}$=-3,當(dāng)a≥1時,f(a)=-log2a=-3.求出a=8.從而f(6-a)=f(-2)=sin(-$\frac{2π}{3}$),由此能求出結(jié)果.
解答 解:∵f(x)=$\left\{\begin{array}{l}{sin\frac{πx}{3},x<1}\\{-lo{g}_{2}x,x≥1}\end{array}\right.$且f(a)=-3,
∴當(dāng)a<1時,f(a)=$sin\frac{aπ}{3}$=-3,不成立,
當(dāng)a≥1時,f(a)=-log2a=-3,解得a=8.
∴f(6-a)=f(-2)=sin(-$\frac{2π}{3}$)=-sin($π-\frac{π}{3}$)=-sin$\frac{π}{3}$=-$\frac{\sqrt{3}}{2}$.
故選:D.
點評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(\frac{1}{e},\frac{{{e^2}+2}}{e})$ | B. | $(\frac{2}{e},+∞)$ | C. | $(\frac{1}{e},+∞)$ | D. | $(\frac{{{e^2}+2}}{e},+∞)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com