(2013•江蘇一模)(選修4-1 幾何證明選講)
如圖,已知CB是⊙O的一條弦,A是⊙O上任意一點(diǎn),過(guò)點(diǎn)A作⊙O的切線交直線CB于點(diǎn)P,D為⊙O上一點(diǎn),且∠ABD=∠ABP.
求證:AB2=BP•BD.
分析:利用弦切角定理可得∠PAB=∠ADB,又∠ABD=∠ABP,可得△ABP∽△DBA,利用相似三角形得出性質(zhì)即可得出.
解答:解:∵AP是⊙O的切線,∴由弦切角定理可得∠PAB=∠ADB,
又∵∠ABP=∠DBA,∴△ABP∽△DBA,
AB
BD
=
BP
AB
,∴AB2=BP•BD.
點(diǎn)評(píng):熟練掌握弦切角定理化為相似三角形的判定定理和性質(zhì)定理是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江蘇一模)已知cos(75°+α)=
1
3
,則cos(30°-2α)的值為
7
9
7
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江蘇一模)已知Sn,Tn分別是等差數(shù)列{an},{bn}的前n項(xiàng)和,且
Sn
Tn
=
2n+1
4n-2
,(n∈N+)則
a10
b3+b18
+
a11
b6+b15
=
41
78
41
78

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江蘇一模)已知F1,F(xiàn)2是雙曲線的兩個(gè)焦點(diǎn),以線段F1F2為邊作正△MF1F2,若邊MF1的中點(diǎn)在此雙曲線上,則此雙曲線的離心率為
3
+1
3
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江蘇一模)若對(duì)于給定的正實(shí)數(shù)k,函數(shù)f(x)=
k
x
的圖象上總存在點(diǎn)C,使得以C為圓心,1為半徑的圓上有兩個(gè)不同的點(diǎn)到原點(diǎn)O的距離為2,則k的取值范圍是
(0,
9
2
(0,
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江蘇一模)已知全集U={1,2,3,4,5,6},A={1,3,5},B={1,2,3,5},則?U(A∩B)=
{2,4,6}
{2,4,6}

查看答案和解析>>

同步練習(xí)冊(cè)答案