已知簡諧振動f(x)=Asin(ωx+φ)(|φ|<
π
2
)的振幅為
3
2
,圖象上相鄰最高點與最低點之間的距離為5,且過點(0,
3
4
)
,則該簡諧振動的頻率與初相分別為(  )
A、
1
6
,
π
6
B、
1
8
,
π
6
C、
π
4
π
6
D、
1
6
,
π
3
考點:y=Asin(ωx+φ)中參數(shù)的物理意義
專題:三角函數(shù)的圖像與性質
分析:依題意,可得A=
3
2
,(
T
2
)2
+(2×
3
2
2=52,解得T=8,從而可知該簡諧振動的頻率;繼而可得ω=
π
4
,φ=
π
6
,于是可得答案.
解答: 解:∵A=
3
2
,f(x)=
3
2
sin(ωx+φ)(|φ|<
π
2
)的圖象上相鄰最高點與最低點之間的距離為5,
(
T
2
)2
+(2×
3
2
2=52,
T
2
=4,T=
ω
=8,f=
1
T
=
1
8
,
∴ω=
π
4
,
∴f(x)=
3
2
sin(
π
4
x+φ),
又f(0)=
3
2
sinφ=
3
4

∴sinφ=
1
2
,又|φ|<
π
2
,
∴φ=
π
6

∴該簡諧振動的頻率與初相分別為
1
8
π
6
,
故選:B.
點評:本題考查y=Asin(ωx+φ)中參數(shù)的物理意義,確定ω=
π
4
是關鍵,也是難點,考查轉化思想與方程思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,其右頂點和上頂點分別為AB原點到直線的距離為
2
5
5

(1)求橢圓方程;
(2)直線l:y=k(x+2)交橢圓于P,Q兩點,若點B始終在以PQ為直徑的圓內,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

7
10
5
8
,
9
11
8
10
,
21
25
15
19
若a>b>0,m>0,則
b+m
a+m
b
a
的關系( 。
A、相等B、前者大
C、后者大D、不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3cos(x+
π
6
)

(1)寫出函數(shù)f(x)的周期;
(2)將函數(shù)f(x)圖象上所有的點向右平移
π
6
個單位,得到函數(shù)g(x)的圖象,寫出函數(shù)g(x)的表達式,并判斷函數(shù)g(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某景區(qū)內開設經(jīng)營熱飲等食品的店鋪若干.根據(jù)以往對500名40歲以下(含40歲)人員和500名40歲以上人員的統(tǒng)計調查,有如下一系列數(shù)據(jù):40歲以下(含40歲)人員購買熱飲等食品的有260人,40歲以上人員購買熱飲等食品的有220人;
(1)請根據(jù)以上數(shù)據(jù)作出2×2列聯(lián)表,
(2)運用獨立性檢驗思想,判斷購買熱飲等食品與年齡(按上述統(tǒng)計中的年齡分類方式)是否有關系?(注:要求達到99.9%的把握才能認定為有關系.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
ax
x2+b
在x=-1處取得極值-2.
(1)求f(x)的解析式;
(2)m為何值時,函數(shù)f(x)在區(qū)間(m,2m+1)上單調遞增?
(3)若直線l與f(x)的圖象相切于P(x0,y0),求l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我市某旅行社擬組團參加衡山文化一日游,預測每天游客人數(shù)在50至130 人之間,游客人數(shù)x(人)與游客的消費總額y(元)之間近似地滿足關系:y=-x2+240x-10000.那么游客的人均消費額最高為
 
元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點M(-3,-3)的直線l被圓x2+y2+4y-21=0所截得的弦長為4
5
,則直線l的方程為( 。
A、2x-y+3=0
B、x+2y+9=0
C、x-2y-9=0
D、2x-y+3=0或x+2y+9=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log2
x+4
+2)(x>0)的反函數(shù)是
 

查看答案和解析>>

同步練習冊答案