已知正數(shù)x、y滿足x+2y=1,求+的最小值.
【答案】分析:利用x+2y=1與+相乘,展開(kāi)利用均值不等式求解即可.
解答:解:∵x、y為正數(shù),且x+2y=1,
+=(x+2y)(+
=3++≥3+2,
當(dāng)且僅當(dāng)=,即當(dāng)x=-1,y=1-時(shí)等號(hào)成立.
+的最小值為3+2
點(diǎn)評(píng):利用基本不等式求函數(shù)最值是高考考查的重點(diǎn)內(nèi)容,對(duì)不符合基本不等式形式的應(yīng)首先變形,然后必須滿足三個(gè)條件:一正、二定、三相等.同時(shí)注意靈活運(yùn)用“1”的代換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x、y滿足x+2y=1,求
1
x
+
1
y
的最小值.
解:∵x+2y=1且x、y>0,
1
x
+
1
y
=(
1
x
+
1
y
)(x+2y)≥2
1
xy
•2
2xy
=4
2
,
(
1
x
+
1
y
)min=4
2
,
判斷以上解法是否正確?說(shuō)明理由;若不正確,請(qǐng)給出正確解法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x,y滿足x+2y=1,則
1
x
+
1
y
的最小值為( 。
A、6
B、5
C、3+2
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x,y滿足x+2y=1,則
1
x
+
1
y
的最小值為
3+2
2
3+2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•奉賢區(qū)二模)已知正數(shù)x,y滿足x+y=xy,則x+y的最小值是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正數(shù)x,y滿足x+2y-xy=0,則x+2y的最小值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案