如圖,在四棱錐中,底面邊長為1的菱形,, , ,為的中點,為的中點
(Ⅰ)證明:直線;
(Ⅱ)求異面直線AB與MD所成角的大。
(Ⅲ)求點B到平面OCD的距離。
本題主要考查直線與直線、直線與平面、平面與平面的位置關(guān)系、異面直線所成角及點到平面的距離等知識,考查空間想象能力和思維能力,利用綜合法或向量法解決立體幾何問題的能力.
方法一(綜合法)
(1)取OB中點E,連接ME,NE
又
(2)
為異面直線與所成的角(或其補角)
作連接
∵,
所以 與所成角的大小為
(3)點B和點A到平面OCD的距離相等,連接OP,過點A作
于點Q,
又 ,線段AQ的長就是點A到平面OCD的距離
,
∴,所以點B到平面OCD的距離為
方法二(向量法)
作于點P,如圖,分別以AB,AP,AO所在直線為軸建立坐標系
,
(1)
設(shè)平面OCD的法向量為n=(x,y,z),則n=0,n=0
即
取,解得
(2)設(shè)與所成的角為,
, 與所成角的大小為
(3)設(shè)點B到平面OCD的距離為,則為在向量上的投影的絕對值,
由 , 得.所以點B到平面OCD的距離為
科目:高中數(shù)學 來源:2010-2011年廣西省桂林中學高二下學期期中考試數(shù)學 題型:解答題
((本小題滿分12分)
如圖,在四棱錐中,底面是矩形.已知
.
(1)證明平面;
(2)求異面直線與所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源:2012屆福建省三明市高三第一學期測試理科數(shù)學試卷 題型:解答題
如圖,在四棱錐中,底面是菱形,,,,平面,是的中點,是的中點.
(Ⅰ) 求證:∥平面;
(Ⅱ)求證:平面⊥平面;
(Ⅲ)求平面與平面所成的銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆上海市高二年級期終考試數(shù)學 題型:解答題
(本題滿分16分)
如圖,在四棱錐中,底面是矩形.已知.
(1)證明平面;
(2)求異面直線與所成的角的大;
(3)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省高二下學期期末考試附加卷數(shù)學卷 題型:解答題
如圖,在四棱錐中,底面是正方形,側(cè)棱,為中點,作交于
(1)求PF:FB的值
(2)求平面與平面所成的銳二面角的正弦值。
查看答案和解析>>
科目:高中數(shù)學 來源:2011屆浙江省高三6月考前沖刺卷數(shù)學理 題型:解答題
(本小題滿分14分)
如圖,在四棱錐中,底面為平行四邊形,平面,在棱上.
(Ⅰ)當時,求證平面
(Ⅱ)當二面角的大小為時,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com