分析 先求出對稱軸,分析取得最值的位置,計(jì)算進(jìn)而即可獲得問題的解答.
解答 解:函數(shù)y=x2-x-1的對稱軸為x=$\frac{1}{2}$,
故函數(shù)在[-1,$\frac{1}{2}$]上為減函數(shù),函數(shù)在[$\frac{1}{2}$,1]上為增函數(shù).
所以,函數(shù)在x=-1時(shí)取得最大值.
∴最大值為(-1)2-(-1)-1=1.
故答案為:1.
點(diǎn)評 本題考查的是函數(shù)在閉區(qū)間上求最值問題.在解答的過程當(dāng)中充分體現(xiàn)了二次函數(shù)的性質(zhì)、值得同學(xué)們體會和反思.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | ±4 | C. | 2$\sqrt{2}$ | D. | -2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,3) | B. | $(3,\frac{16}{3})$ | C. | $(0,3)∪(3,\frac{16}{3})$ | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 11 | C. | 11i | D. | -11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com