如圖,在平面直角坐標(biāo)系中,是半圓的直徑,是半圓(除端點(diǎn))上的任意一點(diǎn).在線段的延長線上取點(diǎn),使,試求動點(diǎn)的軌跡方程
點(diǎn)的軌跡方程為

試題分析:[解法一]連結(jié),由已知可得,
∴ 點(diǎn)在以為弦,所對圓周角為的圓上.
設(shè)該圓的圓心為,則點(diǎn)在弦的中垂線上,即軸上,且,
,.圓的方程為.
當(dāng)點(diǎn)趨近于點(diǎn)時,點(diǎn)趨近于點(diǎn);當(dāng)點(diǎn)趨近于點(diǎn)時,點(diǎn)趨近于點(diǎn).
所以點(diǎn)的軌跡方程為
[解法二] 連結(jié),由已知可得,
設(shè),則
故若設(shè)直線的斜率為時,直線的斜率為.
為兩直線的交點(diǎn),消去
,當(dāng)時,也在該圓上.
結(jié)合可知,點(diǎn)的軌跡方程為
點(diǎn)評:解決該試題的關(guān)鍵是建立動點(diǎn)滿足的關(guān)系式,設(shè)出點(diǎn)的坐標(biāo),建立關(guān)系式,將關(guān)系式坐標(biāo)化,然后化簡得到其軌跡方程,一般來說,先考慮運(yùn)用定義法求解軌跡,再考慮運(yùn)用直接法來求解,中檔題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程為,則拋物線方程是(   )
A.,B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長軸在軸上,離心率,已知點(diǎn)到這個橢圓上的最遠(yuǎn)距離是,求這個橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的焦點(diǎn)在軸上,離心率為,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)平面區(qū)域D是由雙曲線的兩條漸近線和拋物線y2 ="-8x" 的準(zhǔn)線所圍成的三角形(含邊界與內(nèi)部).若點(diǎn)(x,y) ∈ D,則x+ y的最小值為
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是雙曲線的兩個焦點(diǎn), 在雙曲線上且,則的面積為 (      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線的焦點(diǎn)恰好是曲線的右焦點(diǎn),且曲線與曲線交點(diǎn)連線過點(diǎn),則曲線的離心率是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓+=1(a>b>0)的離心率是,則的最小值為(    )
A.B.1C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,焦距等于6,離心率等于,則此橢圓的方程是
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案