圓ρ=(cosθ+sinθ)的圓心的極坐標(biāo)是( )
A.(1,
B.(
C.(,
D.(2,
【答案】分析:先在極坐標(biāo)方程ρ=(cosθ+sinθ)的兩邊同乘以ρ,再利用直角坐標(biāo)與極坐標(biāo)間的關(guān)系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進(jìn)行代換化成直角坐標(biāo)方程求解即得.
解答:解:將方程ρ=(cosθ+sinθ)兩邊都乘以ρ得:ρ2=pcosθ+ρsinθ,
化成直角坐標(biāo)方程為x2+y2-x-y=0.圓心的坐標(biāo)為().
化成極坐標(biāo)為(1,).
故選C.
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)和直角坐標(biāo)的互化,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別,能進(jìn)行極坐標(biāo)和直角坐標(biāo)的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,A是單位圓與x軸正半軸的交點(diǎn),點(diǎn)P在單位圓上,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
,四邊形OAQP的面積為S.
(1)求
OA
OQ
+S
的最大值及此時(shí)θ的值θ0;
(2)設(shè)點(diǎn)B的坐標(biāo)為(-
3
5
,
4
5
)
,∠AOB=α,在(1)的條件下求cos(α+θ0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•普寧市模擬)如圖,A是單位圓與x軸正半軸的交點(diǎn),點(diǎn)B、P在單位圓上,且B(-
3
5
,
4
5
)
,∠AOB=α,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
,四邊形OAQP的面積為S.
(Ⅰ)求cosα+sinα;
(Ⅱ)求
OA
OQ
+S
的最大值及此時(shí)θ的值θ0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)如圖,A是單位圓與x軸正半軸的交點(diǎn),點(diǎn)B,P在單位圓上,且B(-
3
5
,
4
,5
),∠AOB=α,∠AOP=θ(0<θ<π),
OQ
=
OA
+
OP
.設(shè)四邊形OAQP的面積為S,
(1)求cos(α-
π
6
);
(2)求f(θ)=
OA
OQ
+S的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•瀘州一模)如圖,A是單位圓與x軸正半軸的交點(diǎn),點(diǎn)B、P在單位圓上,且B(-
3
5
,
4
5
),∠AOB=α

(Ⅰ)求
4cosα-2sinα
5cosα+3sinα
的值;
(Ⅱ)設(shè)平行四邊形OAQP的面積為S,∠AOP=θ(0<θ<π),f(θ)=(cosθ+S)S,求f(θ)的最大值及此時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年四川省瀘州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖,A是單位圓與x軸正半軸的交點(diǎn),點(diǎn)B、P在單位圓上,且
(Ⅰ)求的值;
(Ⅱ)設(shè)平行四邊形OAQP的面積為S,∠AOP=θ(0<θ<π),f(θ)=(cosθ+S)S,求f(θ)的最大值及此時(shí)θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案