【題目】已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)是否存在常數(shù)t(t≥0),當(dāng)x∈[t,10]時,f(x)的值域為區(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a).
【答案】(1);(2)
【解析】
(1)由二次函數(shù)的單調(diào)性易得 ,解關(guān)于的不等式組可得.
(2)分,最大值是最大值是三種情況進行討論,對于每一種情況,由區(qū)間長度是求出12-t的值,驗證范圍后即可得到答案.
(1)∵函數(shù)f(x)=x2-16x+q+3的對稱軸是x=8,∴f(x)在區(qū)間[-1,1]上是減函數(shù).
∵函數(shù)在區(qū)間[-1,1]上存在零點,則必有即∴-20≤q≤12.
(2)∵0≤t<10,f(x)在區(qū)間[0,8]上是減函數(shù),在區(qū)間[8,10]上是增函數(shù),且對稱軸是x=8.
①當(dāng)0≤t≤6時,在區(qū)間[t,10]上,f(t)最大,f(8)最小,
∴f(t)-f(8)=12-t,即t2-15t+52=0,
解得t=,∴t=;
②當(dāng)6<t≤8時,在區(qū)間[t,10]上,f(10)最大,f(8)最小,
∴f(10)-f(8)=12-t,解得t=8;
③當(dāng)8<t<10時,在區(qū)間[t,10]上,f(10)最大,f(t)最小,
∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,
∴t=9.
綜上可知,存在常數(shù)t=,8,9滿足條件.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐A﹣BCD中,側(cè)棱AB、AC、AD兩兩垂直,△ABC,△ACD,△ADB的面積分別為 , , , 則三棱錐A﹣BCD的外接球的體積為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系中的原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,已知曲線的極坐標(biāo)方程為ρ=.
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過極點O作直線l交曲線于點P,Q,若|OP|=3|OQ|,求直線l的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)命題p:函數(shù)f(x)=lg(﹣mx2+2x﹣m)的定義域為R;
命題q:函數(shù)g(x)=4lnx+ ﹣(m﹣1)x的圖象上任意一點處的切線斜率恒大于2,
若“p∨q”為真命題,“p∧q”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線的方程為x2=2py(p>0),過點A(0,﹣1)作直線l與拋物線相交于P,Q兩點,點B的坐標(biāo)為(0,1),連接BP,BQ,設(shè)QB,BP與x軸分別相交于M,N兩點.如果QB的斜率與PB的斜率的乘積為﹣3,則∠MBN的大小等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設(shè)利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工藝廠有銅絲5萬米,鐵絲9萬米,準(zhǔn)備用這兩種材料編制成花籃和花盆出售,已知一只花籃需要用銅絲200米,鐵絲300米;編制一只花盆需要100米,鐵絲300米,設(shè)該廠用所有原來編制個花籃, 個花盆.
(Ⅰ)列出滿足的關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)若出售一個花籃可獲利300元,出售一個花盤可獲利200元,那么怎樣安排花籃與花盆的編制個數(shù),可使得所得利潤最大,最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]
在直角坐標(biāo)系xOy中,圓C的方程為(x﹣1)2+y2= ,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,點M的極坐標(biāo)為(2,θ),過點M斜率為1的直線交圓C于A,B兩點.
(1)求圓C的極坐標(biāo)方程;
(2)求|MA||MB|的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com