甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率是數(shù)學(xué)公式,乙每次擊中目標(biāo)的概率是數(shù)學(xué)公式
(1)求甲至多擊中2次,且乙至少擊中2次的概率;
(2)若規(guī)定每擊中一次得3分,未擊中得-1,求乙所得分?jǐn)?shù)ξ的概率和數(shù)學(xué)期望.

解:(1)甲至多擊中2次的概率…(2分)
乙至少擊中2次的概率…(4分)
∴甲至多擊中2次且乙至少擊中2次的概率為…(6分)
(2)由題意ξ=-3,1,5,9,則
…(7分)
…(8分)
…(9分)
…(10分)
∴ξ的分布列為
ξ-31 5 9
P
…(12分)
分析:(1)先甲至多擊中2次的概率,再計(jì)算出乙至少擊中2次的概率,利用互斥事件的概率公式即可得到結(jié)論;
(2)確定乙所得分?jǐn)?shù)ξ的可能取值,求出相應(yīng)的概率,寫(xiě)出分布列,即可求得數(shù)學(xué)期望.
點(diǎn)評(píng):本題考查互斥事件的概率公式,考查離散型隨機(jī)變量的期望,確定變量的取值,求出相應(yīng)的概率是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
1
2
,乙每次擊中目標(biāo)的概率
2
3

(Ⅰ)記甲擊中目標(biāo)的次數(shù)為X,求X的概率分布及數(shù)學(xué)期望;
(Ⅱ)求甲恰好比乙多擊中目標(biāo)2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
2
3
,乙每次擊中目標(biāo)的概率為
1
2
,兩人間每次射擊是否擊中目標(biāo)互不影響.
(1)求乙至多擊中目標(biāo)2次的概率;
(2)求甲恰好比乙多擊中目標(biāo)1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率是
1
2
,乙每次擊中目標(biāo)的概率是
2
3

(1)求甲至多擊中2次,且乙至少擊中2次的概率;
(2)若規(guī)定每擊中一次得3分,未擊中得-1,求乙所得分?jǐn)?shù)ξ的概率和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2006•西城區(qū)一模)甲、乙兩人各進(jìn)行3次投籃,甲每次投中的概率為
2
3
,乙每次投中的概率為
3
4
.求:
(Ⅰ)甲恰好投中2次的概率;
(Ⅱ)乙至少投中2次的概率;
(Ⅲ)甲、乙兩人共投中5次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•紅橋區(qū)一模)甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
3
4
,乙每次擊中目標(biāo)的概率
2
3
,假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒(méi)有影響;每次射擊是否擊中目標(biāo),相互之間沒(méi)有影響.
(Ⅰ)求甲至少有1次未擊中目標(biāo)的概率;
(Ⅱ)記甲擊中目標(biāo)的次數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望Eξ;
(Ⅲ)求甲恰好比乙多擊中目標(biāo)2次的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案