【題目】已知點M(2,2),N(5,-2),點P在x軸上,分別求滿足下列條件的點P的坐標.
(1)∠MOP=∠OPN(O是坐標原點).
(2)∠MPN是直角.
【答案】
(1)解:因為∠MOP=∠OPN,所以OM∥NP.
所以kOM=kNP.又kOM= =1,
kNP= = (x≠5),
所以1= ,所以x=7,即點P的坐標為(7,0)
(2)解:因為∠MPN=90°,所以MP⊥NP,
根據(jù)題意知MP,NP的斜率均存在,
所以kMP·kNP=-1.
kMP= (x≠2),kNP= (x≠5),
所以 × =-1,
解得x=1或x=6,即點P的坐標為(1,0)或(6,0)
【解析】(1)先根據(jù)內(nèi)錯角相等兩直線平行,判斷OM∥NP,從而兩直線的斜率相等,即可求得點P的坐標;(2)由∠MPN是直角可以判斷MP⊥NP,從而兩直線的斜率積為-1,即可求得點P的值,特別的需要確定兩直線的斜率是存在的.
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取某中學甲乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A、B、C的對邊分別為a、b、c,且 ,B=C. (Ⅰ)求cosB的值;
(Ⅱ)設函數(shù)f(x)=sin(2x+B),求 的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正方體ABCD﹣A1B1C1D1中,如圖E、F分別是BB1 , CD的中點,
(1)求證:D1F⊥AE;
(2)求直線EF與CB1所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的一個頂點為A(2,0),離心率為 ,直線y=k(x﹣1)與橢圓C交于不同的兩點 M,N.
(1)求橢圓C的方程,并求其焦點坐標;
(2)當△AMN的面積為 時,求k的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:(a-1)x+y+b=0,l2:ax+by-4=0,求滿足下列條件的a , b的值.
(1)l1⊥l2 , 且l1過點(1,1);
(2)l1∥l2 , 且l2在第一象限內(nèi)與兩坐標軸圍成的三角形的面積為2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E、F分別是AB、PB的中點
(1)求證:EF⊥CD;
(2)在平面PAD內(nèi)求一點G,使GF⊥平面PCB,并證明你的結(jié)論;
(3)求DB與平面DEF所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com