數列的前項組成集合,從集合中任取個數,其所有可能的個數的乘積的和為(若只取一個數,規(guī)定乘積為此數本身),記.例如:當時,,,;當時,,,.
(Ⅰ)求;
(Ⅱ)猜想,并用數學歸納法證明.
科目:高中數學 來源: 題型:解答題
某少數民族的刺繡有著悠久的歷史,如圖(1)(2)(3)(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構成,小正方形數越多刺繡越漂亮,現按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.
(1)求出f(5).
(2)利用合情推理的“歸納推理思想”歸納出f(n+1)與f(n)的關系式,并根據你得到的關系式求f(n)的關系式.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
先閱讀下列不等式的證法,再解決后面的問題:
已知a1,a2∈R,a1+a2=1,求證:+≥.
證明:構造函數f(x)=(x-a1)2+(x-a2)2,f(x)對一切實數x∈R,恒有f(x)≥0,則Δ=4-8(+)≤0,∴+≥.
(1)已知a1,a2,…,an∈R,a1+a2+…+an=1,請寫出上述結論的推廣式;
(2)參考上述解法,對你推廣的結論加以證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設是由個實數組成的行列的數表,如果某一行(或某一列)各數之和為負數,則改變該行(或該列)中所有數的符號,稱為一次“操作”.
(Ⅰ) 數表如表1所示,若經過兩次“操作”,使得到的數表每行的各數之和與每列的各數之和均為非負實數,請寫出每次“操作”后所得的數表(寫出一種方法即可);
表1
1 | 2 | 3 | |
1 | 0 | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:單選題
下面是關于復數z=的四個命題
P1:=2 p2:=2i P3:z的共軛復數為1+i P4:z的虛部為-1
其中真命題為( )
A.P2 ,P3 | B.P1 ,P2 | C.P2,P4 | D.P3 , P4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com