5.已知正項(xiàng)等比數(shù)列{an}滿足a5+a4+a3-a2=5,則a6+a7的最小值為( 。
A.32B.10+10$\sqrt{2}$C.20D.28

分析 可判數(shù)列{an+an+1}也是各項(xiàng)均為正的等比數(shù)列,設(shè)數(shù)列{an+an+1}的公比為x,a2+a3=a,則x∈(1,+∞),a4+a5=ax,結(jié)合已知可得a=$\frac{5}{x-1}$,代入可得y=a6+a7的表達(dá)式,x∈(1,+∞),由導(dǎo)數(shù)求函數(shù)的最值即可.

解答 解:∵數(shù)列{an}是各項(xiàng)均為正的等比數(shù)列,
∴數(shù)列{an+an+1}也是各項(xiàng)均為正的等比數(shù)列,
設(shè)數(shù)列{an+an+1}的公比為x,a2+a3=a,
則x∈(1,+∞),a5+a4=ax,
∴有a5+a4-a3-a2=ax-a=5,即a=$\frac{5}{x-1}$,
∴y=a6+a7=ax2=$\frac{5{x}^{2}}{x-1}$,x∈(1,+∞),
求導(dǎo)數(shù)可得y′=$\frac{5x(x-2)^{2}}{(x-1)^{2}}$,令y′>0可得x>2,
故函數(shù)在(1,2)單調(diào)遞減,(2,+∞)單調(diào)遞增,
∴當(dāng)x=2時(shí),y=a6+a7取最小值:20.
故選:C.

點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),涉及導(dǎo)數(shù)的應(yīng)用,考查分析問(wèn)題解決問(wèn)題的能力,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知$a={2.5^{-\frac{3}{2}}}$,$b={log_{\frac{2}{3}}}2.5$,c=2.5-2,則a、b、c的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.c>a>bD..a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.?dāng)?shù)列{an}的通項(xiàng)公式為an=2n-1,則使不等式${a_1}^2+{a_2}^2+…+{a_n}^2<5×{2^{n+1}}$成立的n的最大值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖所示,直三棱柱ABC-A1B1C1的各條棱長(zhǎng)均為a,D是側(cè)棱CC1的中點(diǎn).
(1)求證:平面AB1D⊥平面ABB1A1;
(2)求平面AB1D與平面ABC所成二面角(銳角)的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=a2015x2015+a2013x2013+a2011x2011+…+a3x3+a1x+1,且f(1)=2,則f(-1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.下列各組函數(shù)相等的是④.
①$f(x)=\frac{{{x^2}-1}}{x-1}$與g(x)=x+1  ②$f(x)=\sqrt{-2{x^3}}$與$g(x)=x\sqrt{-2x}$
③f(x)=(x-2)0與g(x)=1   ④$f(t)=\frac{|t|}{t}$與$g(x)=\frac{{\sqrt{x^2}}}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知復(fù)數(shù)z=(t-1)+(t2-2t-3)i(t∈R)對(duì)應(yīng)的點(diǎn)在第四象限,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.等差數(shù)列{an}滿足an-1+an+an+1=3n(n≥2),函數(shù)f(x)=2x,則log2[f(a1)•f(a2)…f(an)]的值為( 。
A.$\frac{n(n-1)}{2}$B.$\frac{n(n+1)}{2}$C.$\frac{n(n-1)}{4}$D.$\frac{n(n+1)}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函數(shù)在R上的解析式;
(Ⅲ)若對(duì)任意的t∈R,不等式f(t+1)+f(m-2t2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案