精英家教網(wǎng)如圖,PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點,E、F分別是點A在PB、PC上的射影,給出下列結(jié)論:①AF⊥PB,②EF⊥PB,③AE⊥BC,④平面AEF⊥平面PBC,⑤△AFE是直角三角形,其中正確的命題的序號是
 
分析:分別根據(jù)線面垂直和面面垂直的判定定理和性質(zhì)定理分別進(jìn)行證明.
解答:解:∵AB是⊙O的直徑,
∴AC⊥BC,
∵PA⊥⊙O所在平面,
∴PA⊥⊙O所在平面內(nèi)的所有直線,
∴PA⊥AC,PA⊥AB,PA⊥BC,
∴BC⊥面PAC,
∴BC⊥PC,
∵F是點A在PC上的射影,
∴AF⊥PC,
∵AF∩PC=F,
∴PC⊥面PAC,∴AF⊥BC,
又AF⊥PC,
∴AF⊥面PBC,∴AF⊥PB,∴①正確;
∵AF⊥PB,AF⊥PC,
∴AF⊥面PBC,
∴AF⊥EF,即△AFE是直角三角形,∴⑤正確.
∵AF⊥PB,AE⊥PB,AF∩AE=A,
∴PB⊥面AEF,∴EF⊥PB,∴②正確.
∵AF⊥面PBC,
∴若AE⊥BC,
則AE⊥面PBC,
此時E,F(xiàn)重合,與已知矛盾.∴③錯誤;
∵AF⊥面PBC,
AF?面AEF,
∴平面AEF⊥平面PBC,
∴④正確.
故答案是:①②④⑤
點評:本題主要考查了直線與平面垂直的判定,以及直線與平面垂直的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PB于E,AF⊥PC于F,給出下列結(jié)論:①BC⊥面PAC;②AF⊥面PCB;③EF⊥PB;④AE⊥面PBC.其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

16、如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PB于E,AF⊥PC于F,
下列四個命題中:
①BC⊥面PAC;    ②AF⊥面PBC;
③EF⊥PB;        ④AE⊥面PBC.
其中正確命題的是
①②③
.(請寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PB于E,AF⊥PC于F,
給出下列結(jié)論:
①BC⊥面PAC;
②AF⊥面PCB;
③EF⊥PB;
④AE⊥面PBC.   
其中正確命題個數(shù)是
3
3
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖:PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,AE⊥PC,AF⊥PB,給出下列結(jié)論①AE⊥BC,②AE⊥PB,③AF⊥BC,④AE⊥平面PBC,其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案