函數(shù)f(x)=
x2-1(0≤x≤1)
x2(-1≤x<0)
的反函數(shù)是( 。
A、y=
x+1
(-1≤x≤0)
-
x
(0<x≤1)
B、y=
-
x+1
(-1≤x≤0)
-
x
(0<x≤1)
C、y=
x+1
(-1≤x≤0)
x
(0<x≤1)
D、y=
-
x+1
(-1≤x≤0)
x
(0<x≤1)
分析:欲求分段函數(shù)f(x)=
x2-1(0≤x≤1)
x2(-1≤x<0)
的反函數(shù),即從原函數(shù)式中分段反解出x,后再進(jìn)行x,y互換,即得反函數(shù)的解析式.
解答:解:當(dāng)0≤x≤1時(shí),得x=
y+1
(-1≤y≤0)
,當(dāng)-1≤x<0時(shí),
x=-
y
(0<y≤1)
,
∴所求函數(shù)的反函數(shù)為y=
x+1
(-1≤x≤0)
-
x
(0<x≤1)

故選A.
點(diǎn)評(píng):分段函數(shù)應(yīng)在各自的條件下分別求反函數(shù)式及反函數(shù)的定義域,分段函數(shù)的反函數(shù)也是分段函數(shù).本題考查反函數(shù)的求法,屬于基礎(chǔ)題目,要會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù),掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+4xx≥0
4x-x2x<0.
若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍是( 。
A、(-∞,-1)∪(2,+∞)
B、(-1,2)
C、(-2,1)
D、(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+1x-1
,其圖象在點(diǎn)(0,-1)處的切線(xiàn)為l.
(I)求l的方程;
(II)求與l平行的切線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=
x2+1
 
 
 
 
 
 
,(x≥0)
-x+
1
 
 
 
 
 
,(x<0)
,則f(-1)的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)已知函數(shù)f(x)=
-x2+4x-10(x≤2)
log3(x-1)-6(x>2)
,若f(6-a2)>f(5a),則實(shí)數(shù)a的取值范圍是
(-6,1)
(-6,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•重慶一模)設(shè)函數(shù)f(x)=-x2+2ax+m,g(x)=
ax

(I)若函數(shù)f(x),g(x)在[1,2]上都是減函數(shù),求實(shí)數(shù)a的取值范圍;
(II)當(dāng)a=1時(shí),設(shè)函數(shù)h(x)=f(x)g(x),若h(x)在(0,+∞)內(nèi)的最大值為-4,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案