分析 分別求出$\overrightarrow{AB}$=(-2,-1,3),$\overrightarrow{AC}$=(1,-3,2),設(shè)平面ABC的一個(gè)法向量$\overrightarrow{n}$=(x,y,z),由$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-2x-y+3z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=x-3y+2z=0}\end{array}\right.$,能求出平面ABC的一個(gè)法向量的坐標(biāo).
解答 解:∵A(0,2,3),B(-2,1,6),C(1,-1,5),
∴$\overrightarrow{AB}$=(-2,-1,3),$\overrightarrow{AC}$=(1,-3,2),
設(shè)平面ABC的一個(gè)法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AB}=-2x-y+3z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=x-3y+2z=0}\end{array}\right.$,
取z=1,得$\overrightarrow{n}$=(1,1,1),
∴平面ABC的一個(gè)法向量的坐標(biāo)為(1,1,1).
故答案為:(1,1,1).
點(diǎn)評(píng) 本題考查平面的法向量的坐標(biāo)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意法向量的性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 5或6 | C. | 6 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-2,0)∪(2,+∞) | B. | (-∞,-2)∪(0,2) | C. | (-∞.-2)∪(2.+∞) | D. | (-2,0)∪(0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {3,4,5} | B. | {4,5} | C. | {3,5} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com