已知函數(shù)

(1)當時,求的單調遞增區(qū)間;

(2)當時,的值域是的值

 

【答案】

(1) (2)

【解析】

試題分析:

(1)

的單調遞增區(qū)間為所求

(2),

 

考點:三角函數(shù)的最值及單調性

點評:本題考查二倍角公式兩角和的正弦函數(shù),三角函數(shù)的基本性質,考查計算能力.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分12分)

已知函數(shù)。

   (1):當時,求函數(shù)的極小值;

   (2):試討論函數(shù)零點的個數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年福建省福州市高三畢業(yè)班質檢理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù).

1)當時,求函數(shù)的單調遞增區(qū)間;

2)設的內角的對應邊分別為,且若向量與向量共線,求的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省東莞市第三次月考高一數(shù)學試卷(解析版) 題型:解答題

已知函數(shù) 

(1)當時,求函數(shù)的最大值和最小值;

(2)求實數(shù)的取值范圍,使在區(qū)間上是單調減函數(shù)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省高三下學期假期檢測文科數(shù)學試卷 題型:解答題

已知函數(shù).().

  (1)當時,求函數(shù)的極值;

(2)若對,有成立,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年吉林省高三上學期第二次教學質量檢測文科數(shù)學卷 題型:解答題

已知函數(shù)

(1)當時,求的極小值;

(2)設,求的最大值

 

查看答案和解析>>

同步練習冊答案