已知點P為圓x2+y2=4上的動點,且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點Q的軌跡為曲線C,過定點M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點。
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點N,使得∠ANB總能被x軸平分。
解:(1)設(shè)Q(x,y)為曲線C上的任意一點,則點P(x,2y)在圓上,
,曲線C的方程為
(2)設(shè)點N的坐標(biāo)為(n,0),直線l的方程為x=sy+t, 
代入曲線C的方程,可得
∵0<t<2,
, 
∴直線l與曲線C總有兩個公共點.(也可根據(jù)點M在橢圓C的內(nèi)部得到此結(jié)論)
設(shè)點A,B的坐標(biāo)分別,則,
要使∠ANB被x軸平分,只要
,,
也就是,,
,即只要(nt-4)s=0,
當(dāng)時,(*)對任意的s都成立,從而∠ANB總能被x軸平分,
所以在x軸上存在定點,使得∠ANB總能被x軸平分。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P為圓x2+y2=4上的動點,且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點Q的軌跡為曲線C,過定點M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點.
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點N,使得∠ANB總能被x軸平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P為圓x2+y2-4x-4y+7=0上一點,且點P到直線x-y+m=0距離的最小值為
2
-1
,則m的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點P為圓x2+y2=4上的動點,且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點Q的軌跡為曲線C,過定點M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點.
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點N,使得∠ANB總能被x軸平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省鐵嶺市六校高三(上)第三次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知點P為圓x2+y2=4上的動點,且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點Q的軌跡為曲線C,過定點M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點.
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點N,使得∠ANB總能被x軸平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省珠海一中高三(下)第一次調(diào)研數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知點P為圓x2+y2=4上的動點,且P不在x軸上,PD⊥x軸,垂足為D,線段PD中點Q的軌跡為曲線C,過定點M(t,0)(0<t<2)任作一條與y軸不垂直的直線l,它與曲線C交于A、B兩點.
(1)求曲線C的方程;
(2)試證明:在x軸上存在定點N,使得∠ANB總能被x軸平分.

查看答案和解析>>

同步練習(xí)冊答案