在直角坐標(biāo)系中,角φ,2x的終邊分別與單位圓(以原點(diǎn)O為圓心)交于A、B兩點(diǎn),函數(shù)f(x)=
OA
OB
,若f(x)≤f(
π
6
)對(duì)任意x∈R恒成立
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的最小正周期,對(duì)稱軸方程與單調(diào)遞增區(qū)間.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:計(jì)算題
分析:(1)先求得A,B坐標(biāo),再利用利用向量的數(shù)量積公式,結(jié)合f(x)≤f(
π
6
)對(duì)x∈R恒成立,確定函數(shù)的解析式;
(2)利用余弦函數(shù)的性質(zhì),即可求函數(shù)f(x)的最小正周期,對(duì)稱軸方程與單調(diào)遞增區(qū)間.
解答: 解:(1)∵角φ、2x的終邊分別與單位圓(以原點(diǎn)O為圓心)交于A、B兩點(diǎn),
可得A(cosφ,sinφ),B(cos2x,sin2x)
∴f(x)=
OA
OB
,=cosφcos2x+sinφsin2x=cos(2x-φ)
∵f(x)≤f(
π
6
)對(duì)x∈R恒成立,
∴f(
π
6
)=1,即cos(2×
π
6
-φ)=1
∴φ-
π
3
=2kπ
∴φ=2kπ+
π
3
,k∈Z
∴f(x)=cos[2x-(2kπ+
π
3
)]=cos(2x-
π
3
),
即函數(shù)f(x)的解析式為f(x)=cos(2x-
π
3
).
(2)由(1)知,f(x)=cos(2x-
π
3
).
最小正周期T=π.
令2x-
π
3
=kπ,k∈Z,得x=
2
+
π
6
,k∈Z,
∴f(x)的對(duì)稱軸為x=x=
2
+
π
6
,k∈Z,
由2kπ-π≤2x-
π
3
≤2kπ,得kπ-
3
≤x≤kπ+
π
6
,k∈Z,
故函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-
3
,kπ+
π
6
],k∈Z.
點(diǎn)評(píng):本題考查向量知識(shí)的運(yùn)用,考查三角函數(shù)性質(zhì),考查學(xué)生計(jì)算能力,屬于中檔題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(2x-k•2-x)log2|x|+
1
2x
,f(2)=4.
(Ⅰ)求k的值;
(Ⅱ)判斷并證明函數(shù)f(x)的奇偶性;
(Ⅲ)若F(x)=f(x)+2且F(m)=10(m≠0),求F(-m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩人相約10天之內(nèi)在某地會(huì)面,約定先到的人等候另一人3天后方可離開,若他們?cè)谄谙迌?nèi)到達(dá)目的地是等可能的,則此二人會(huì)面的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R(其中ω>0)
(1)求函數(shù)f(x)的值域;
(2)若函數(shù)y=f(x)的圖象與直線y=-1的兩個(gè)相鄰交點(diǎn)間的距離為
π
2
,求函數(shù)y=f(x)的對(duì)稱軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某次游園的一項(xiàng)活動(dòng)中,設(shè)置了兩個(gè)中獎(jiǎng)方案:
方案1:在如圖所示的游戲盤內(nèi)轉(zhuǎn)動(dòng)一個(gè)小球,如果小球靜止時(shí)停在正方形區(qū)域內(nèi)則中獎(jiǎng);
方案2:從一個(gè)裝有2個(gè)紅球和3個(gè)白球的袋中無放回地取出2個(gè)球,當(dāng)兩個(gè)球同色時(shí)則中獎(jiǎng).
兩個(gè)方案中,哪個(gè)方案中獎(jiǎng)率更高?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的四棱錐P-ABCD中,PA⊥平面ABCD,PA=3,四邊形ABCD為邊長(zhǎng)是2的正方形,E是PB的中點(diǎn).
(1)求四棱錐P-ABCD的體積;
(2)求證:AD⊥PB;
(3)求證:PD∥平面EAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A、B是橢圓
x2
4
+y2=1上兩點(diǎn),O為坐標(biāo)原點(diǎn),OH⊥AB于點(diǎn)H,又OA與OB斜率分別為k1,k2,且滿足k1•k2=-
3
4

(1)求點(diǎn)H的軌跡方程
(2)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,-1),B(5,1),直線l經(jīng)過點(diǎn)A,且與直線3x+4y-10=0平行,
(Ⅰ)求直線l的方程;
(Ⅱ)求以B為圓心,并且與直線l相切的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果軸截面為正方形的圓柱的側(cè)面積是4π,那么圓柱的體積等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案