已知三條不重合的直線(xiàn)m、n、l與兩個(gè)不重合的平面α、β,有下列命題:
①若m∥n,n?α,則m∥α;
②若l⊥α,m⊥β且l∥m,則α∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α.
其中正確的命題個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
【答案】分析:①,由線(xiàn)面關(guān)系得出m∥α或m?α;②,由垂直于同一直線(xiàn)的兩個(gè)平面平行得到;③由面面平行的判定定理得到;④由面面垂直的性質(zhì)定理得到.
解答:解:對(duì)于①,若m∥n,n?α,則m∥α或m?α,①不正確;
對(duì)于②,若l⊥α,m⊥β且l∥m,則α∥β,顯然成立;
對(duì)于③,若m?α,n?α,m∥β,n∥β,則α∥β,
由面面平行的判定定理知它是不正確的;
對(duì)于④,若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α,
由面面垂直的性質(zhì)定理知它是正確的;綜上所述,正確命題的個(gè)數(shù)為2,故選B.
點(diǎn)評(píng):本題主要考查線(xiàn)面平行和線(xiàn)面垂直的判定定理和性質(zhì)定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、已知三條不重合的直線(xiàn)m、n、l與兩個(gè)不重合的平面α、β,有下列命題:
①若m∥n,n?α,則m∥α;
②若l⊥α,m⊥β且l∥m,則α∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α.
其中正確的命題個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條不重合的直線(xiàn)m,n,l,兩個(gè)不重合的平面α,β,給出下列四個(gè)命題:
①若m∥n,n?α,則m∥α;
 ②若l⊥α,m⊥β,且l∥m則α∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α.
其中真命題是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條不重合的直線(xiàn)m,n,l,兩個(gè)不重合的平面α,β,則下列命題中:
(1)若m∥n,n?α則m∥α;
(2)若l⊥α,m⊥β且l∥m則α∥β;
(3)若m?α,n?α,m∥β,n∥β則α∥β;
(4)若α⊥β,α∩β=m,n?β,n⊥m則n⊥α;
(5)若α∥β,m∥n,m⊥α則n⊥β;
其中正確的命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條不重合的直線(xiàn)兩個(gè)不重合的平面,有下列命題:
①若m∥n,n?α,則m∥α;
②若l⊥α,m⊥β,且l∥m,則α∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α⊥β,α∩β=m,n?β,n⊥m,則n⊥α.
其中正確的序號(hào)為
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三條不重合的直線(xiàn)l,m,n和兩個(gè)不重合的平面α,β,下列命題中正確的是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案