某學(xué)生在高三年級(jí)最近五次考試中的數(shù)學(xué)成績(jī)?nèi)缦卤恚?br />
第x次考試12345
數(shù)學(xué)成績(jī)y分132137126130
若x,y具有相關(guān)關(guān)系,利用表格中的數(shù)據(jù)求得的回歸直線方程為y=0.4x+128.8,則★處的數(shù)據(jù)應(yīng)該為
 
考點(diǎn):線性回歸方程
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:由題意,
.
x
=3,代入y=0.4x+128.8,可得
.
y
=130,即可得出結(jié)論.
解答: 解:由題意,
.
x
=3,代入y=0.4x+128.8,可得
.
y
=130,
∴★+132+137+126+130=650,
∴★=125.
故答案為:125.
點(diǎn)評(píng):本題主要考查了線性回歸方程等知識(shí),考查了學(xué)生的數(shù)據(jù)處理能力和應(yīng)用意識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|
a
x
-1|-4a(x+1)-1.
(Ⅰ)當(dāng)a=-1時(shí),求函數(shù)f(x)的零點(diǎn);
(Ⅱ)記函數(shù)y=f(x)所有零點(diǎn)之和為g(a),當(dāng)a>0時(shí),求g(a)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件
x-y+3≥0
x+y≥0
x≤2
,則 x2+y2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=x2-12x+20,g(x)=f(x)+|f(x)|,則g(1)+g(2)+…+g(10)=( 。
A、0B、9C、12D、18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x-x2的零點(diǎn)個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=(-1)n×2an+2n-1,a1=0.
(Ⅰ)求a4的值,并證明數(shù)列{a2n}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列區(qū)間中,函數(shù)f(x)=2x-3有零點(diǎn)的區(qū)間是( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如表給出的是某產(chǎn)品的產(chǎn)量x(噸)與生產(chǎn)能耗y(噸)的對(duì)應(yīng)數(shù)據(jù):
x3456
y2.5344.5
根據(jù)上表提供的數(shù)據(jù),得出y關(guān)于x的線性回歸方程為
y
=0.7x+
a
,試預(yù)測(cè)當(dāng)產(chǎn)量x=8時(shí),生產(chǎn)能耗y約為( 。
A、4.95B、5.57
C、5.95D、6.75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,則它的外接球的體積為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案