已知中心在原點的橢圓C: 的一個焦點為為橢圓C上一點,△MOF2的面積為.
(1)求橢圓C的方程;
(2)是否存在平行于OM的直線l,使得l與橢圓C相交于A、B兩點,且以線段AB為直徑的圓恰好過原點?若存在,求出直線l的方程;若不存在,說明理由.
(1),(2)

試題分析:(1)求橢圓標準方程一般方法為待定系數(shù)法,因為C=3,則橢圓C的方程為,又,即點M的坐標為(1,4),(舍去)橢圓方程為,(2)存在性問題,從假設存在出發(fā). 假定存在符合題意的直線l與橢圓C相交于,因為以AB為直徑的圓過原點,,設直線l
方程為.由
,解得,滿足,因此直線l的方程為.
⑴C=3,則橢圓C的方程為

點M的坐標為(1,4)
(舍去)
橢圓方程為                            7分
⑵假定存在符合題意的直線l與橢圓C相交于,其方程為.
,
,且.                         11分
因為以AB為直徑的圓過原點,
 
.    ,代入.
存在這的直線l,所在直線的方程為.                 15分
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,設橢圓動直線與橢圓只有一個公共點,且點在第一象限.
(1)已知直線的斜率為,用表示點的坐標;
(2)若過原點的直線垂直,證明:點到直線的距離的最大值為.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知,,分別是橢圓的四個頂點,△是一個邊長為2的等邊三角形,其外接圓為圓
(1)求橢圓及圓的方程;
(2)若點是圓劣弧上一動點(點異于端點,),直線分別交線段,橢圓于點,,直線交于點
(。┣的最大值;
(ⅱ)試問:..,兩點的橫坐標之和是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:(a>b>0),過點(0,1),且離心率為
(1)求橢圓C的方程;
(2)A,B為橢圓C的左右頂點,直線lx=2x軸交于點D,點P是橢圓C上異于A,B的動點,直線AP,BP分別交直線l于E,F(xiàn)兩點.證明:當點P在橢圓C上運動時,恒為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知點A(1,0)及圓,C為圓B上任意一點,求AC垂直平分線與線段BC的交點P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的焦點是雙曲線的頂點,雙曲線的焦點是橢圓的長軸頂點,若兩曲線的離心率分別為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,右焦點到右頂點的距離為.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓交于兩點,是否存在實數(shù),使成立?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

曲線y=ex在點A(0,1)處的切線斜率為(  )
A.1B.2C.eD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F1、F2分別是橢圓C=1(ab>0)的左、右焦點,A是橢圓C的頂點,B是直線AF2與橢圓C的另一個交點,∠F1AF2=60°.

(1)求橢圓C的離心率;
(2)已知△AF1B的面積為40,求a,b的值.

查看答案和解析>>

同步練習冊答案