已知點P在曲線y=
x2
4
+
1
2
lnx上,a為曲線在點P處的切線的傾斜角,則a的最小值為( 。
A、0
B、
π
4
C、
3
D、
4
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:求出原函數(shù)的導(dǎo)函數(shù),利用基本不等式求得導(dǎo)函數(shù)的最小值,再由傾斜角的正切值等于斜率得答案.
解答:解:由y=
x2
4
+
1
2
lnx,得y=
1
2
x+
1
2x
(x>0),
y=
1
2
x+
1
2x
≥2
1
2
x•
1
2x
=1

當(dāng)且僅當(dāng)
x
2
=
1
2x
,即x=1時等號成立.
∴tana=1,
由a∈[0,π),
∴a=
π
4

故選:B.
點評:本題考查了利用導(dǎo)數(shù)研究過曲線上的某點的切線方程,過曲線上的某點的切線的斜率,就是函數(shù)在該點處的導(dǎo)數(shù)值,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

.
a11a12a13
a21a22a23
a31a32a33
.
=a11A11+a21A21+a31A31
,若ai,j=icosx+jsinx,其中i,j∈{1,2,3},則f(x)=a13A11+a23A21+a33A31的最小值是( 。
A、-3B、1C、-1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=8x,過點M(1,0)的直線交拋物線于A,B兩點,F(xiàn)為拋物線的焦點,若|AF|=6,O為原點,則△OAB的面積是( 。
A、2
2
B、
5
2
2
C、3
2
D、
7
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=-
2a
b
ln(x+1)的圖象在x=1處的切線l過點(0,-
1
b
),并且l與圓C:x2+y2=1相離,則點(a,b)與圓C的位置關(guān)系是( 。
A、在圓上B、在圓外
C、在圓內(nèi)D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=1nx在x=
3
處的切線的傾斜α為( 。
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a、b、c、d滿足(b-lna)2+(c-d+2)2=0,則(a-c)2+(b-d)2的最小值為(  )
A、
2
2
B、
1
2
C、2
D、
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-
1
b
eax(a>0,b>0)的圖象在x=0處的切線與圓x2+y2=1相切,則ab的最大值是( 。
A、
1
4
B、
1
2
C、1
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)滿足:f(x)=
x2+2,x∈[0,1)
2-x2,x∈[-1,0)
,且f(x+2)=f(x),g(x)=
2x+5
x+2
,則方程f(x)=g(x)在區(qū)間[-7,3]上的所有實數(shù)根之和為(  )
A、-9B、-10
C、-11D、-12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(12分)已知分別為三個內(nèi)角的對邊,

(1)求;

(2)若的面積為,求.

 

查看答案和解析>>

同步練習(xí)冊答案