(2012•黃岡模擬)F1,F(xiàn)2為橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)
的焦點,過F2作垂直于x軸的直線交橢圓于點P,且∠PF1F2=30°,則橢圓的離心率為(  )
分析:根據(jù)過F2作垂直于x軸的直線交橢圓于點P,且∠PF1F2=30°,利用橢圓的定義及勾股定理,即可求得橢圓的離心率.
解答:解:由題意,設(shè)|PF2|=x,則|PF1|=2x,∴3x=2a
∵4c2+x2=4x2,∴2c=
3
x

e=
c
a
=
3
x
3x
=
3
3

故選A.
點評:本題考查橢圓的定義,考查橢圓的性質(zhì),考查學生的計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•黃岡模擬)設(shè)△ABC的內(nèi)角A,B,C所對的邊長分別為a,b,c,且cosB=
45
,b=2.
(Ⅰ)當A=30°時,求a的值;
(Ⅱ)當△ABC的面積為3時,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃岡模擬)已知函數(shù)f(x)=x3-3x2+1,g(x)=
(x-
1
2
)2+1(x>0)
-(x+3)2+1(x≤0)
,則方程g[f(x)]-a=0(a為正實數(shù))的實數(shù)根最多有( 。﹤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃岡模擬)已知函數(shù)f(x)=kx3+3(k-1)x2-k2+1(k>0)的單調(diào)遞減區(qū)間是(0,4),則k的值是
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃岡模擬)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AA1=
6
,AC1
=3,AB=2,BC=1.
(1)證明:BC⊥平面ACC1A1
(2)D為CC1中點,在棱AB上是否存在一點E,使DE∥平面AB1C1,證明你的結(jié)論.
(3)求二面角B-AB1-C1的余弦值的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•黃岡模擬)在三棱錐O-ABC中,三條棱OA、OB、OC兩兩相互垂直,且OA>OB>OC,分別過OA、OB、OC作一個截面平分三棱錐的體積,截面面積依次為S1,S2,S3,則S1,S2,S3中的最小值是
S3
S3

查看答案和解析>>

同步練習冊答案