橢圓與直線x+y-1=0相交于A、B兩點,且OA⊥OB(O為坐標原點),
(1)求橢圓E與圓x2+y2=1的交點坐標;
(2)當|AB|=時,求橢圓E的方程。
解:(1)設(shè)A(x1,y1)、B(x2,y2),
則A、B坐標是方程組的解,
消去y,得,①

時,,同理,;
,②
,得,③
由②、③,得,于是,
故橢圓E與圓x2+y2=1的交點坐標為。
(2)由①知,同理,
則AB中點為,
在Rt△AOB中,,
,④
由②、④及a>b>0,解得,
故橢圓E的方程為。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓中心在坐標原點,焦點在x軸上,離心率e=
3
2
,若橢圓與直線x+y+1=0交于P,Q兩點,且OP⊥OQ(O為坐標原點),求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓與直線x+y=1交于A,B兩點,點C是線段AB的中點,且|AB|=2
2
,直線OC的斜率為
2
2
,求橢圓的標準方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓中心在坐標原點,對稱軸為坐標軸,焦點在x軸上,離心率為,橢圓與直線x+y+1=0相交于P、Q兩點,且OP⊥OQ.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

橢圓數(shù)學(xué)公式與直線x+y-1=0相交于P、Q兩點,且數(shù)學(xué)公式(O為坐標原點).
(Ⅰ)求證:數(shù)學(xué)公式等于定值;
(Ⅱ)當橢圓的離心率數(shù)學(xué)公式時,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江西省宜春市上高二中高二(上)第三次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

橢圓與直線x+y-1=0相交于P、Q兩點,且OP⊥OQ(O為原點),
(1)求的值;
(2)若橢圓離心率在上變化時,求橢圓長軸的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案